scholarly journals Detecting human serum albumin using screen-printed carbon electrode by cyclic voltammetry

2015 ◽  
Vol 48 (2) ◽  
pp. S82
Author(s):  
Shin-Yu Lai ◽  
Jen-Tsai Liu ◽  
Ching-Jung Chen ◽  
Jang-Zern Tsai
2016 ◽  
Vol 12 (1) ◽  
Author(s):  
Intan Frina Utamiyanti

<p>The development of material-based glucose sensor SiO<sub>2</sub>-CuO using Screen Printed Carbon Electrode (SPCE) had been done. Three types of materials were used to detect glucose, i.e Multi Wall Carbon Nanotube (MWCNT)-SiO2-CuO, SiO2-CuO (A) dan SiO2-CuO (B). The differences composition of SiO<sub>2</sub>-CuO(A) and SiO<sub>2</sub>-CuO(B) occurred during the addition of NaOH in synthesis process of SiO2-CuO (B). The prepared materials were analyzed by Scanning Electron Microscopy (SEM), cyclic voltammetry method and chrono-amperometry. Cyclic voltammetry analysis was conducted at a potential range of -1.0 - 1.5 V with Ag/AgCl as reference electrode. The scan rate was 100 mV/sec and the potential was varied at (-0.6), (-0.5) and (-0.4) V, in which the duration of each analysis was 5 second. Based on the result of analysis, whether by SEM, cyclic voltammetry and chrono-amperometry, the SiO<sub>2</sub>-CuO (B) was found to be the best material for detection of glucose.</p>


RSC Advances ◽  
2014 ◽  
Vol 4 (68) ◽  
pp. 36286-36300 ◽  
Author(s):  
Shan Huang ◽  
Fawei Zhu ◽  
Qi Xiao ◽  
Quan Zhou ◽  
Wei Su ◽  
...  

The interaction between Ru anticancer drug and HSA was investigated systematically under physiological conditions.


2016 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Intan Frina Utamiyanti ◽  
Barlah Rumhayati ◽  
Ani Mulyasuryani

The development of material-based glucose sensor SiO<sub>2</sub>-CuO using Screen Printed Carbon Electrode (SPCE) had been done. Three types of materials were used to detect glucose, i.e Multi Wall Carbon Nanotube (MWCNT)-SiO2-CuO, SiO2-CuO (A) dan SiO2-CuO (B). The differences composition of SiO<sub>2</sub>-CuO(A) and SiO<sub>2</sub>-CuO(B) occurred during the addition of NaOH in synthesis process of SiO2-CuO (B). The prepared materials were analyzed by Scanning Electron Microscopy (SEM), cyclic voltammetry method and chrono-amperometry. Cyclic voltammetry analysis was conducted at a potential range of -1.0 - 1.5 V with Ag/AgCl as reference electrode. The scan rate was 100 mV/sec and the potential was varied at (-0.6), (-0.5) and (-0.4) V, in which the duration of each analysis was 5 second. Based on the result of analysis, whether by SEM, cyclic voltammetry and chrono-amperometry, the SiO<sub>2</sub>-CuO (B) was found to be the best material for detection of glucose.


Molekul ◽  
2017 ◽  
Vol 12 (2) ◽  
pp. 139 ◽  
Author(s):  
Erica Marista Rosida ◽  
Ani Mulyasuryani ◽  
Rachmat Triandi Tjahjanto

Nitrite is one of the food preservatives that the government permits, but on the use of over limits can cause endanger health, so it is necessary to control the content of nitrite in the food. Modification of electrodes on a screen printed carbon electrode (SPCE) with Fe3O4 has been successfully done for determination of nitrite. Modification of the electrode has been done by electrodeposition with cyclic voltammetry. Electrodeposition successfully performed with an electrolyte solution of FeCl3 in ethanol. Selection of the optimum drying temperature modified electrode obtained based on the respond of the solution of nitrite in Britton Robinson buffer pH 8. The result of the modification electrode used for the determination of nitrite with squarewave voltammetry method. Reaction between Fe3+ with nitrite a basis for determining nitric indirectly measured so that the peak current is the peak current of Fe3+ of about 0,55 V vs Ag/AgCl. The results showed nitrite measurements with this method has a detection limit of 1.3 x 10-8 M.


2015 ◽  
Vol 7 (10) ◽  
pp. 4159-4167 ◽  
Author(s):  
Abd-Elgawad Radi ◽  
Hossam M. Nassef ◽  
Mohamed I. Attallah

The electrochemical behavior of the antimalarial drug pyrimethamine (PMT) was examined at a screen printed carbon electrode (SPCE) in different aqueous supporting electrolytes using cyclic voltammetry (CV) and differential pulse voltammetry (DPV).


Sign in / Sign up

Export Citation Format

Share Document