Microwave absorption performance of the absorber based on epsilon-Fe3N/epoxy and carbonyl iron/epoxy composites

2015 ◽  
Vol 374 ◽  
pp. 755-761 ◽  
Author(s):  
Shu-Yuan Zhang ◽  
Quan-Xi Cao ◽  
Yi-Rong Xue ◽  
Yue-Xin Zhou
2022 ◽  
Vol 572 ◽  
pp. 151320
Author(s):  
Xianyu Jiang ◽  
Weihong Wan ◽  
Bo Wang ◽  
Linbo Zhang ◽  
Liangjun Yin ◽  
...  

2021 ◽  
Vol 93 (1) ◽  
pp. 205-211
Author(s):  
Fatma Bakal ◽  
Ahmet Yapici ◽  
Muharrem Karaaslan ◽  
Oğuzhan Akgöl

Purpose The purpose of this paper is to investigate the effect of doping element on the microwave absorption performance of hexagonal nano boron nitride (h-nBN)-reinforced basalt fabric (BF)/epoxy composites. A new type of hybrid composite that will be produced by the use of boron nitride as an additive that leads to increased radar absorption capability will be developed and a new material that can be used in aeronautical radar applications. Design/methodology/approach This study is focused on the microwave absorption properties of h-nBN doped basalt fabric-reinforced epoxy composites. Basalt fabric (BF)/epoxy composites (pure composites) and the BF/h-nBN (1 Wt.% h-nBN doped composites) hybrid composites were fabricated by vacuum infusion method. Phase identification of the composites were performed using X-ray diffraction (XRD), the 2θ scan range was from 10 to 60 with the scanning speed of 3°/min and surface morphologies of the composites were investigated using scanning electron microscopy (SEM). Microwave properties of samples were investigated through transmission/reflection measurements in Agilent brand 2-Port PNA-L Network Analyzer in the frequency range of 3–18 GHz. The prepared sample is positioned between two horn antennas with and without metal plate. Findings Experimental results show that h-nBN doped composite was synthesized successfully and the produced hexagonal nano boron nitride-added fiber laminated composite material has good absorption behavior when they are used with metallic sheets and good for isolation applications at many points in the 3–18 GHz band. Originality/value This paper will contribute to the literature on the use of basalt fabric, which are new types of fibers, and hexagonal nano boron nitride and the effects of boron nitride on radar absorption properties of composite material. It presents detail characterization of each composite by using XRD and scanning electron microscopy.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2921 ◽  
Author(s):  
Wei Huang ◽  
Yujiang Wang ◽  
Shicheng Wei ◽  
Bo Wang ◽  
Yi Liang ◽  
...  

Hollow magnetic structures have great potential to be used in the microwave absorbing field. Herein, Fe3O4 hollow spheres with different levels of hollowness were synthesized by the hydrothermal method under Ostwald ripening effect. In addition to their microstructures, the microwave absorption properties of such spheres were investigated. The results show that the grain size and hollowness of Fe3O4 hollow spheres both increase as the reaction time increases. With increasing hollowness, the attenuation ability of electromagnetic wave of Fe3O4 spheres increases first and then decreases, finally increases sharply after the spheres break down. Samples with strong attenuation ability can achieve good impedance matching, which it does preferentially as the absorber thickness increases. Fe3O4 hollow spheres show the best microwave absorption performance when the reaction time is 24 h. The minimum reflection loss (RL (min)) can reach −40 dB, while the thickness is only 3.2 mm.


Sign in / Sign up

Export Citation Format

Share Document