Magnetic properties of soft magnetic Fe@SiO2/ferrite composites prepared by wet/dry method

Author(s):  
František Onderko ◽  
Zuzana Birčáková ◽  
Samuel Dobák ◽  
Peter Kollár ◽  
Martin Tkáč ◽  
...  
2013 ◽  
Vol 86 (7) ◽  
pp. 670-680 ◽  
Author(s):  
Lavinia Curecheriu ◽  
Petronel Postolache ◽  
Vincenzo Buscaglia ◽  
Nadejda Horchidan ◽  
Marin Alexe ◽  
...  

Author(s):  
June D. Kim

Iron-base alloys containing 8-11 wt.% Si, 4-8 wt.% Al, known as “Sendust” alloys, show excellent soft magnetic properties. These magnetic properties are strongly dependent on heat treatment conditions, especially on the quenching temperature following annealing. But little has been known about the microstructure and the Fe-Si-Al ternary phase diagram has not been established. In the present investigation, transmission electron microscopy (TEM) has been used to study the microstructure in a Sendust alloy as a function of temperature.An Fe-9.34 wt.% Si-5.34 wt.% Al (approximately Fe3Si0.6Al0.4) alloy was prepared by vacuum induction melting, and homogenized at 1,200°C for 5 hrs. Specimens were heat-treated in a vertical tube furnace in air, and the temperature was controlled to an accuracy of ±2°C. Thin foils for TEM observation were prepared by jet polishing using a mixture of perchloric acid 15% and acetic acid 85% at 10V and ∼13°C. Electron microscopy was performed using a Philips EM 301 microscope.


1998 ◽  
Vol 22 (4_1) ◽  
pp. 186-189
Author(s):  
M. Matsumoto ◽  
A. Morisako ◽  
Y. Mutoh

2021 ◽  
pp. 129965
Author(s):  
Zhong Li ◽  
Jianing Qi ◽  
Zhuangzhuang Li ◽  
Hongxia Li ◽  
Hui Xu ◽  
...  

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 5
Author(s):  
Lukasz Hawelek ◽  
Tymon Warski ◽  
Patryk Wlodarczyk ◽  
Marcin Polak ◽  
Przemyslaw Zackiewicz ◽  
...  

The complex structural and magnetic studies of the annealed rapidly quenched Cu-free Fe72Ni8Nb4Si2B14 alloy (metallic ribbons form) are reported here. Based on the calorimetric results, the conventional heat treatment process (with heating rate 10 °C/min and subsequent isothermal annealing for 20 min) for wound toroidal cores has been optimized to obtain the least lossy magnetic properties (for the minimum value of coercivity and magnetic core losses at 50 Hz). For optimal conditions, the complex permeability in the 104–108 Hz frequency range together with core power losses obtained from magnetic induction dependence up to the frequency of 400 kHz was successfully measured. The average and local crystal structure was investigated by the use of the X-ray diffraction method and the transmission electron microscopy observations and proved its fully glassy state. Additionally, for the three temperature values, i.e., 310, 340 and 370 °C, the glass relaxation process study in the function of annealing time was carried out to obtain a deeper insight into the soft magnetic properties: magnetic permeability and cut-off frequency. For this type of Cu-free soft magnetic materials, the control of glass relaxation process (time and temperature) is extremely important to obtain proper magnetic properties.


Sign in / Sign up

Export Citation Format

Share Document