Metal-insulator transition temperature in EuO1-x films as a function of exposure time in air

Author(s):  
Narendra Shrestha ◽  
Jinke Tang

The present work studies the microstructural and electrical properties of La0.9Pb0.1MnO3 and La0.8Y0.1Pb0.1MnO3 ceramics synthesized by solid-state route method. Microstructure and elemental analysis of both samples were carried out by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS) method, respectively. Phase analysis by X-ray diffraction (XRD) indicated formation of single phase distorted structure. The XRD data were further analyzed by Rietveld refinement technique. Raman analysis reveals that Y atom substitutes La site into the LPMO with shifting of phonon modes. The temperature variation of resistivity of undoped and Y-doped La0.9Pb0.1MnO3 samples have been investigated. The electrical resistivity as a function of temperature showed that all samples undergo an metal-insulator (M-I) transition having a peak at transition temperature TMI. Y-doping increases the resistivity and the metal-insulator transition temperature (TMI) shifts to lower temperature. The temperature-dependent resistivity for temperatures less than metal-insulator transition is explained in terms the quadratic temperature dependence and for T > TMI, thermally activated conduction (TAC) is appropriate. Variation of frequency dispersion in permittivity and loss pattern due to La-site substitution in LPMO was observed in the dielectric response curve.


2015 ◽  
Vol 17 (17) ◽  
pp. 11638-11646 ◽  
Author(s):  
Xinfeng He ◽  
Yijie Zeng ◽  
Xiaofeng Xu ◽  
Congcong Gu ◽  
Fei Chen ◽  
...  

Using ultraviolet-infrared spectroscopy and first principles calculations, it is revealed that changes in the orbital structure can regulate the W-doped VO2 phase transition temperature.


2021 ◽  
Vol 317 ◽  
pp. 17-21
Author(s):  
Muhammad Syazwan Mohd Sabri ◽  
Nur Ain Athirah Che Apandi ◽  
Norazila Ibrahim

The electroresistance, ER effect of La0.85Ag0.15Mn1-xMoxO3 (x = 0.00 and 0.05) samples prepared using solid method are investigated. The increased of applied current from 5 mA to 10 mA does not change the metal-insulator transition temperature, TMI for both samples however decreased the resistivity in the temperature region of 50 K – 300 K. Both samples exhibit large ER effect at low temperature region. At TMI, the ER value is 75.5% (x =0) and decrease to 34.15% (x = 0.05). However, at 300 K, the value of ER increases to 57 % for Mo substituted sample, and the value decreases to 6.4% for the x =0 sample. The enhanced ER effect at 300 K may be due to the growth of conductive filaments under increased applied current. The increase of applied current may perturb the arrangement of magnetic inhomogeneity induced by Mo substitution, result in reduction of resistivity and lead to the observation of ER effect. These findings suggest potential application of La0.85Ag0.15Mn1-xMoxO3 (x = 0.05) in spintronic devices.


2019 ◽  
Vol 55 (1) ◽  
pp. 99-106
Author(s):  
Xiaofen Guan ◽  
Rongrong Ma ◽  
Guowei Zhou ◽  
Zhiyong Quan ◽  
G. A. Gehring ◽  
...  

2020 ◽  
Vol 46 (15) ◽  
pp. 23560-23566
Author(s):  
Angélica Marcílio de Souza ◽  
Rodrigo Cercena ◽  
Rodrigo da Costa Duarte ◽  
Sabrina Arcaro ◽  
Alexandre Gonçalves Dal Bó

2009 ◽  
Vol 67 ◽  
pp. 131-136 ◽  
Author(s):  
Kundu Sourav ◽  
Kumar Nath Tapan

We have reported in this paper, the effect of grain size in Nd0.6Sr0.4MnO3 .We have investigated the effect of grain size on metal-insulator transition and Curie temperature. We have also reported here the variation of low field magnetoresistance with temperature and grain size. We have observed that the Curie temperature increases monotonically with particle size. The metal insulator transition temperature initially increases with particle size and then gets fixed to a certain value. In these Nd0.6Sr0.4MnO3 nanometric systems, any significant variation of magnetoresistance with particle size is not observed.


2010 ◽  
Vol 24 (27) ◽  
pp. 5451-5456 ◽  
Author(s):  
H. C. JIANG ◽  
W. L. ZHANG ◽  
X. F. CAO ◽  
W. X. ZHANG ◽  
B. PENG

Ag -doped La 0.7 Ca 0.3 MnO 3 (LCMO) films were prepared on silicon substrate by RF magnetron sputtering. The dependences of transport properties on annealing temperature were explored. It is shown that the resistivity of the samples decreases and the metal–insulator transition temperature shifts to higher temperature with the increase in annealing temperature. Two metal–insulator transition temperatures are presented in the R – T plots of Ag -doped LCMO films, which can be explained by the Ag 1+ substitution of La 3+ to form La 1-x Ag x MnO 3 compound. Compared with LCMO thin films, Ag -doping can observably improve the TM-I and decrease the resistivity of the samples.


1976 ◽  
Vol 20 (10) ◽  
pp. 1009-1012 ◽  
Author(s):  
G.A. Thomas ◽  
F. Wudl ◽  
F. DiSalvo ◽  
W.M. Walsh ◽  
L.W. Rupp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document