A coupled electro-chemo-mechanical theory for polyelectrolyte gels with application to modeling their chemical stimuli-driven swelling response

Author(s):  
Sooraj Narayan ◽  
Lallit Anand
Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 102
Author(s):  
Ferenc Horkay

The objective of this article is to introduce the readers to the field of polyelectrolyte gels. These materials are common in living systems and have great importance in many biomedical and industrial applications. In the first part of this paper, we briefly review some characteristic properties of polymer gels with an emphasis on the unique features of this type of soft material. Unsolved problems and possible future research directions are highlighted. In the second part, we focus on the typical behavior of polyelectrolyte gels. Many biological materials (e.g., tissues) are charged (mainly anionic) polyelectrolyte gels. Examples are shown to illustrate the effect of counter-ions on the osmotic swelling behavior and the kinetics of the swelling of model polyelectrolyte gels. These systems exhibit a volume transition as the concentration of higher valence counter-ions is gradually increased in the equilibrium bath. A hierarchy is established in the interaction strength between the cations and charged polymer molecules according to the chemical group to which the ions belong. The swelling kinetics of sodium polyacrylate hydrogels is investigated in NaCl solutions and in solutions containing both NaCl and CaCl2. In the presence of higher valence counter-ions, the swelling/shrinking behavior of these gels is governed by the diffusion of free ions in the swollen network, the ion exchange process and the coexistence of swollen and collapsed states.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 41
Author(s):  
Katrina Cruz ◽  
Yu-Hsiu Wang ◽  
Shaina A. Oake ◽  
Paul A. Janmey

Filamentous anionic polyelectrolytes are common in biological materials. Some examples are the cytoskeletal filaments that assemble into networks and bundled structures to give the cell mechanical resistance and that act as surfaces on which enzymes and other molecules can dock. Some viruses, especially bacteriophages are also long thin polyelectrolytes, and their bending stiffness is similar to those of the intermediate filament class of cytoskeletal polymers. These relatively stiff, thin, and long polyelectrolytes have charge densities similar to those of more flexible polyelectrolytes such as DNA, hyaluronic acid, and polyacrylates, and they can form interpenetrating networks and viscoelastic gels at volume fractions far below those at which more flexible polymers form hydrogels. In this report, we examine how different types of divalent and multivalent counterions interact with two biochemically different but physically similar filamentous polyelectrolytes: Pf1 virus and vimentin intermediate filaments (VIF). Different divalent cations aggregate both polyelectrolytes similarly, but transition metal ions are more efficient than alkaline earth ions and their efficiency increases with increasing atomic weight. Comparison of these two different types of polyelectrolyte filaments enables identification of general effects of counterions with polyelectrolytes and can identify cases where the interaction of the counterions and the filaments exhibits stronger and more specific interactions than those of counterion condensation.


1983 ◽  
Vol 54 (4) ◽  
pp. 874-879 ◽  
Author(s):  
D. P. White ◽  
N. J. Douglas ◽  
C. K. Pickett ◽  
J. V. Weil ◽  
C. W. Zwillich

Previous investigation has demonstrated that progesterone, a hormone found in premenopausal women, is a ventilatory stimulant. However, fragmentary data suggest that normal women may have lower ventilatory responses to chemical stimuli than men, in whom progesterone is found at low levels. As male-female differences have not been carefully studied, we undertook a systematic comparison of resting ventilation and ventilatory responses to chemical stimuli in men and women. Resting ventilation was found to correlate closely with CO2 production in all subjects (r = 0.71, P less than 0.001), but women tended to have a greater minute ventilation per milliliter of CO2 produced (P less than 0.05) and consequently a lower CO2 partial pressure (PCO2) (men 35.1 +/- 0.5 Torr, women 33.2 +/- 0.5 Torr; P less than 0.02). Women were also found to have lower tidal volumes, even when corrected from body surface area (BSA), and greater respiratory frequency than comparable males. The hypoxic ventilatory response (HVR) quantitated by the shape parameter A was significantly greater in men [167 +/- 22 (SE)] than in women (109 +/- 13; P less than 0.05). In men this hypoxic response was found to correlate closely with O2 consumption (r = 0.75, P less than 0.001) but with no measure of size or metabolic rate in women. The hypercapnic ventilatory response, expressed as the slope of ventilation vs. PCO2, was also greater in men (2.30 +/- 0.23) than in women (1.58 +/- 0.19, P less than 0.05). Finally women tended to have higher ventilatory responses in the luteal than in the follicular menstrual phase, but this was significant only for HVR (P less than 0.05). Women, with relatively higher resting ventilation, have lower responses to hypoxia and hypercapnia.


2007 ◽  
Vol 3 (3) ◽  
pp. 174-182 ◽  
Author(s):  
Thomas Voets ◽  
Grzegorz Owsianik ◽  
Annelies Janssens ◽  
Karel Talavera ◽  
Bernd Nilius

Sign in / Sign up

Export Citation Format

Share Document