Thermal noise calculation method for precise estimation of the signal-to-noise ratio of ultra-low-field MRI with an atomic magnetometer

2012 ◽  
Vol 215 ◽  
pp. 100-108 ◽  
Author(s):  
Tatsuya Yamashita ◽  
Takenori Oida ◽  
Shoji Hamada ◽  
Tetsuo Kobayashi
2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Carolin Horstmeier ◽  
Annette B. Ahrberg ◽  
Dagmar Berner ◽  
Janina Burk ◽  
Claudia Gittel ◽  
...  

The magic angle effect increases the MRI signal of healthy tendon tissue and could be used for more detailed evaluation of tendon structure. Furthermore, it could support the discrimination of hypointense artefacts induced by contrast agents such as superparamagnetic iron oxide used for cell tracking. However, magic angle MRI of the equine superficial digital flexor tendon has not been accomplished in vivo in standing low-field MRI so far. The aim of this in vivo study was to evaluate the practicability of this magic angle technique and its benefit for tracking superparamagnetic iron oxide-labelled multipotent mesenchymal stromal cells. Six horses with induced tendinopathy in their forelimb superficial digital flexor tendons were injected locally either with superparamagnetic iron oxide-labelled multipotent mesenchymal stromal cells or serum. MRI included standard and magic angle image series in T1- and T2∗-weighted sequences performed at regular intervals. Image analysis comprised blinded evaluation and quantitative assessment of signal-to-noise ratio. The magic angle technique enhanced the tendon signal-to-noise ratio (P<0.001). Hypointense artefacts were observable in the cell-injected superficial digital flexor tendons over 24 weeks and artefact signal-to-noise ratio differed significantly from tendon signal-to-noise ratio in the magic angle images (P<0.001). Magic angle imaging of the equine superficial digital flexor tendon is feasible in standing low-field MRI. The current data demonstrate that the technique improves discrimination of superparamagnetic iron oxide-induced artefacts from the surrounding tendon tissue.


2018 ◽  
Vol 57 (9) ◽  
pp. 616-625 ◽  
Author(s):  
Tatiana Monaretto ◽  
Andre Souza ◽  
Tiago Bueno Moraes ◽  
Victor Bertucci-Neto ◽  
Corinne Rondeau-Mouro ◽  
...  

2019 ◽  
Vol 9 (7) ◽  
pp. 1312 ◽  
Author(s):  
Tiago Bueno Moraes ◽  
Tatiana Monaretto ◽  
Luiz Colnago

This review discusses the theory and applications of the Continuous Wave Free Precession (CWFP) sequence in low-field, time-domain nuclear magnetic resonance (TD-NMR). CWFP is a special case of the Steady State Free Precession (SSFP) regime that is obtained when a train of radiofrequency pulses, separated by a time interval Tp shorter than the effective transverse relaxation time (T2*), is applied to a sample. Unlike regular pulsed experiments, in the CWFP regime, the amplitude is not dependent on T1. Therefore, Tp should be as short as possible (limited by hardware). For Tp < 0.5 ms, thousands of scans can be performed per second, and the signal to noise ratio can be enhanced by more than one order of magnitude. The amplitude of the CWFP signal is dependent on T1/T2; therefore, it can be used in quantitative analyses for samples with a similar relaxation ratio. The time constant to reach the CWFP regime (T*) is also dependent on relaxation times and flip angle (θ). Therefore, T* has been used as a single shot experiment to measure T1 using a low flip angle (5°) or T2, using θ = 180°. For measuring T1 and T2 simultaneously in a single experiment, it is necessary to use θ = 90°, the values of T* and M0, and the magnitude of CWFP signal |Mss|. Therefore, CWFP is an important sequence for TD-NMR, being an alternative to the Carr-Purcell-Meiboom-Gill sequence, which depends only on T2. The use of CWFP for the improvement of the signal to noise ratio in quantitative and qualitative analyses and in relaxation measurements are presented and discussed.


2012 ◽  
Vol 27 ◽  
pp. 348-351 ◽  
Author(s):  
Dan Zhang ◽  
Shohei Fukumoto ◽  
Shingo Tsunaki ◽  
Yoshimi Hatsukade ◽  
Saburo Tanaka

Author(s):  
Michał Wieteska ◽  
Wojciech Obrębski ◽  
Ewa Piątkowska-Janko ◽  
Błażej Sawionek ◽  
Piotr Bogorodzki

This article presents studies carried by laboratory of Biomedical and Nucleonic Computer Systems. Our research concerns improvement of quality of imaging in low-field MRI scanner with field strength of 0.23 T as well as development of techniques of proton-electron dual resonance imaging and hyperpolarization of noble gases. Achieved results may contribute to improvement of multiple techniques of medical diagnostics, in particular functional study of lungs and heart as well as brain perfusion.


Sign in / Sign up

Export Citation Format

Share Document