Grain-refining and strengthening mechanisms of bulk ultrafine grained CP-Ti processed by L-ECAP and MDF

2021 ◽  
Vol 83 ◽  
pp. 196-207
Author(s):  
Peng-Cheng Zhao ◽  
Guang-Jian Yuan ◽  
Run-Zi Wang ◽  
Bo Guan ◽  
Yun-Fei Jia ◽  
...  
2010 ◽  
Vol 667-669 ◽  
pp. 707-712 ◽  
Author(s):  
Xiao Yan Liu ◽  
Xi Cheng Zhao ◽  
Xi Rong Yang

Ultrafine-grained (UFG) commercially pure (CP) Ti with a grain size of about 200 nm was produced by ECAP up to 8 passes using route BC at room temperature. For ECAP processing a proper die set was designed and constructed with an internal channel angle Φ of 120° and an outer arc of curvature Ψ of 20°. Strain rate sensitivity of UFG CP-Ti and CG CP-Ti were investigated by compression tests in the temperature range of 298~673K and strain rate range of 10-4~100s-1 using Gleeble simulator machine. Evolution of the microstructure during compression testing was observed using optical microscopy (OM) and transmission electron microscopy (TEM). Strain rate sensitivity value m of the UFG CP-Ti has been measured and is found to increase with increasing temperature and decreasing strain rate, and is enhanced compared to that of CG CP-Ti. Result of the deformation activation energy determination of UFG CP-Ti indicates that the deformation mechanism in UFG CP-Ti is correlated to the grain boundaries.


2020 ◽  
Vol 771 ◽  
pp. 138613 ◽  
Author(s):  
Hao Wang ◽  
Hongwei Geng ◽  
Dengshan Zhou ◽  
Kodai Niitsu ◽  
Ondrej Muránsky ◽  
...  

2007 ◽  
Vol 26-28 ◽  
pp. 381-384 ◽  
Author(s):  
Zhi Guo Fan ◽  
Chao Ying Xie

Ultrafine-grained (UFG) CP Ti were successfully prepared by Equal Channel Angular Extrusion (ECAE) at 390°C~400°C, small than 0.5 um in size. The compressive tests for coarse grain (CG) and UFG Ti were carried out at room temperature (RT) and 77K. UFG Ti showed excellent ductility and higher strength than CG Ti at RT and 77 K. The strain hardening of UFG Ti was improved at 77 K. The compressive ultimate strengths of CG Ti and UFG Ti were both enhanced as the strain rate increased, but CG Ti showed more obvious temperature and strain rate dependence of flow stress, comparing with UFG Ti. When the strain rate increased to 1×10-1/s, the compressive ultimate strength of UFG Ti was kept almost constant, while the ultimate strength of CG Ti increased to the strength level of UFG Ti.


2011 ◽  
Vol 261-263 ◽  
pp. 712-716 ◽  
Author(s):  
Chao Zhang ◽  
Run Wu ◽  
Chang Song ◽  
Yong Fu Zhang ◽  
Shu Li Li ◽  
...  

The grain refining of C-Mn steel on CSP line was investigated in this paper. The grain size was about 100μm after rolling by stand F1 and then decreased all the way of the rolling process(stands F2-F6) to 15μm. The strengthening mechanisms, grain refinement strengthening, solution strengthening, precipitation strengthening and dislocation strengthening, were figured out to develop a physical metallurgy model for prediction of the properties. It was noted that there is an agreement between the predicted properties and the measured ones of the steel.


2013 ◽  
Vol 562 ◽  
pp. 89-95 ◽  
Author(s):  
Chang Wang ◽  
Wenquan Cao ◽  
Jie Shi ◽  
Chongxiang Huang ◽  
Han Dong

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 48
Author(s):  
Anastasiia Dolzhenko ◽  
Alexander Pydrin ◽  
Sergey Gaidar ◽  
Rustam Kaibyshev ◽  
Andrey Belyakov

An effect of tempforming on the microstructure, the carbide precipitation, and the strengthening mechanisms of high-strength low-alloyed steel has been analyzed. The quenched steel was subjected to 1 h tempering at a temperature of 873 K, 923 K, or 973 K followed by plate rolling at the same temperature. Tempforming resulted in the formation of an ultrafine grained lamellar-type microstructure with finely dispersed carbides of (Nb,V)C, Fe3C and Cr23C6. A decrease in tempforming temperature resulted in a reduction of the transverse grain size from 950 nm to 350 nm. Correspondingly, the size of Fe3C/Cr23C6 particles decreased from 90 nm to 40 nm while the size of (Nb,V)C particles decreased from 17 nm to 4 nm. Refining the tempformed microstructure with a decrease in thetempforming temperature provided an increase in the yield strength from 690 MPa to 1230 MPa.


2014 ◽  
Vol 937 ◽  
pp. 162-167 ◽  
Author(s):  
Xiao Mei He ◽  
Shan Shan Zhu ◽  
Cong Hui Zhang

Equal Channel Angular Pressing (ECAP) and Surface Mechanical Attrition (SMAT) are the two Severe Plastic Deformation (SPD) processes that have been used to process ultrafine grained (UFG) materials. These two kinds of processes have been used to refine the grain size of coarse-grained commercial pure titanium (CP-Ti). The development of microstructure during equal channel angular pressing (ECAP) and surface mechanical attrition (SMAT) of commercial pure titanium (CP-Ti) is investigated to establish the mechanisms of grain refinement. Based on the various experimental results and analysis, it has been found that the high-strain-rate and many direction loading is conducive to the formation of nanograins and also the grains with less than 100 nm cannot be obtained by the single equal channel angular pressing (ECAP).


2006 ◽  
Vol 503-504 ◽  
pp. 763-768 ◽  
Author(s):  
V.V. Latysh ◽  
Irina P. Semenova ◽  
G.H. Salimgareeva ◽  
I.V. Kandarov ◽  
Yuntian T. Zhu ◽  
...  

This paper studies the effect of combined SPD treatment on microstructure and mechanical properties of semi-products out of CP Ti. The combined processing, consisting of equal-channel angular pressing and further thermomechanical treatment, produced ultrafine-grained rods out of Grade 2 CP Ti with a diameter of 6.5 mm and a length of up to 1 m. It was established that the formation of homogeneous ultrafine-grained structure in Ti rod with α-grain size of about 100 nm allowed to enhance yield stress by 200% in comparison with initial annealed state.


Sign in / Sign up

Export Citation Format

Share Document