Femtosecond laser induced simultaneous functional nanomaterial synthesis, in situ deposition and hierarchical LIPSS nanostructuring for tunable antireflectance and iridescence applications

2021 ◽  
Vol 89 ◽  
pp. 179-185
Author(s):  
Ruijie Liu ◽  
Dongshi Zhang ◽  
Zhuguo Li
2015 ◽  
Vol 158 ◽  
pp. 115-120 ◽  
Author(s):  
Chunyong Liang ◽  
Xue Zhong ◽  
Hongshui Wang ◽  
Baoe Li ◽  
Yanli Cai ◽  
...  

Author(s):  
Sheila Shahidi ◽  
Sanaz Dalalsharifi ◽  
Mahmood Ghoranneviss ◽  
Rattanaphol Mongkholrattanasit

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lucas C. R. Silva ◽  
Rodrigo Studart Corrêa ◽  
Jamie L. Wright ◽  
Barbara Bomfim ◽  
Lauren Hendricks ◽  
...  

AbstractAmazonian Dark Earths (ADEs) are unusually fertile soils characterised by elevated concentrations of microscopic charcoal particles, which confer their distinctive colouration. Frequent occurrences of pre-Columbian artefacts at ADE sites led to their ubiquitous classification as Anthrosols (soils of anthropic origin). However, it remains unclear how indigenous peoples created areas of high fertility in one of the most nutrient-impoverished environments on Earth. Here, we report new data from a well-studied ADE site in the Brazilian Amazon, which compel us to reconsider its anthropic origin. The amounts of phosphorus and calcium—two of the least abundant macronutrients in the region—are orders of magnitude higher in ADE profiles than in the surrounding soil. The elevated levels of phosphorus and calcium, which are often interpreted as evidence of human activity at other sites, correlate spatially with trace elements that indicate exogenous mineral sources rather than in situ deposition. Stable isotope ratios of neodymium, strontium, and radiocarbon activity of microcharcoal particles also indicate exogenous inputs from alluvial deposition of carbon and mineral elements to ADE profiles,  beginning several thousands of years before the earliest evidence of soil management for plant cultivation in the region. Our data suggest that indigenous peoples harnessed natural processes of landscape formation, which led to the unique properties of ADEs, but were not responsible for their genesis. If corroborated elsewhere, this hypothesis would transform our understanding of human influence in Amazonia, opening new frontiers for the sustainable use of tropical landscapes going forward.


Author(s):  
Andreas Benjamin Kaufmann ◽  
Marina Lazarov ◽  
Stefan Kiefer ◽  
Juraj Majzlan ◽  
Stefan Weyer

Here we present a method for in-situ determination of stable antimony (Sb) isotope compositions by ultraviolet (UV)-femtosecond-laser-ablation-multi-collector-ICP-MS (fs-LA-MC-ICP-MS). Metallic antimony and a number of Sb minerals (stibnite, senarmontite, chalcostibite, tetrahedrite,...


Sign in / Sign up

Export Citation Format

Share Document