Decomposition behavior of yttria-stabilized zirconia and its effect on directed energy deposited Ti-based composite material

Author(s):  
Gwanghyo Choi ◽  
Won Seok Choi ◽  
Yoon Sun Lee ◽  
Dahye Kim ◽  
Ji Hyun Sung ◽  
...  
Author(s):  
W. W. Davison ◽  
R. C. Buchanan

Yttria stabilized zirconia (YSZ) has become a significant technological material due to its high ionic conductivity, chemical inertness, and good mechanical properties. Temperatures on the order of 1700°C are required, however, to densify YSZ to the degree necessary for good electrical and mechanical properties. A technique for lowering the densification temperature is the addition of small amounts of material which facilitate the formation of a liquid phase at comparatively low temperatures. In this study, sintered microstructures obtained from the use of Al2O3 as a sintering aid were examined with scanning, transmission, and scanning transmission microscopy (SEM, TEM, and STEM).


2020 ◽  
Vol 38 (4A) ◽  
pp. 491-500
Author(s):  
Abeer F. Al-Attar ◽  
Saad B. H. Farid ◽  
Fadhil A. Hashim

In this work, Yttria (Y2O3) was successfully doped into tetragonal 3mol% yttria stabilized Zirconia (3YSZ) by high energy-mechanical milling to synthesize 8mol% yttria stabilized Zirconia (8YSZ) used as an electrolyte for high temperature solid oxide fuel cells (HT-SOFC). This work aims to evaluate the densification and ionic conductivity of the sintered electrolytes at 1650°C. The bulk density was measured according to ASTM C373-17. The powder morphology and the microstructure of the sintered electrolytes were analyzed via Field Emission Scanning Electron Microscopy (FESEM). The chemical analysis was obtained with Energy-dispersive X-ray spectroscopy (EDS). Also, X-ray diffraction (XRD) was used to obtain structural information of the starting materials and the sintered electrolytes. The ionic conductivity was obtained through electrochemical impedance spectroscopy (EIS) in the air as a function of temperatures at a frequency range of 100(mHz)-100(kHz). It is found that the 3YSZ has a higher density than the 8YSZ. The impedance analysis showed that the ionic conductivity of the prepared 8YSZ at 800°C is0.906 (S.cm) and it was 0.214(S.cm) of the 3YSZ. Besides, 8YSZ has a lower activation energy 0.774(eV) than that of the 3YSZ 0.901(eV). Thus, the prepared 8YSZ can be nominated as an electrolyte for the HT-SOFC.


2018 ◽  
Vol 2 (3) ◽  
Author(s):  
Thomas Götsch ◽  
Erminald Bertel ◽  
Alexander Menzel ◽  
Michael Stöger-Pollach ◽  
Simon Penner

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2767
Author(s):  
Ki-Won Jeong ◽  
Jung-Suk Han ◽  
Gi-Uk Yang ◽  
Dae-Joon Kim

Yttria-stabilized zirconia (3Y-TZP) containing 0.25% Al2O3, which is resistant to low temperature degradation (LTD), was aged for 10 h at 130–220 °C in air. The aged specimens were subsequently indented at loads ranging from 9.8 to 490 N using a Vickers indenter. The influence of preaging temperature on the biaxial strength of the specimens was investigated to elucidate the relationship between the extent of LTD and the strength of zirconia restorations that underwent LTD. The indented strength of the specimens increased as the preaging temperature was increased higher than 160 °C, which was accompanied by extensive t-ZrO2 (t) to m-ZrO2 (m) and c-ZrO2 (c) to r-ZrO2 (r) phase transformations. The influence of preaging temperature on the indented strength was rationalized by the residual stresses raised by the t→m transformation and the reversal of tensile residual stress on the aged specimen surface due to the indentation. The results suggested that the longevity of restorations would not be deteriorated if the aged restorations retain compressive residual stress on the surface, which corresponds to the extent of t→m phase transformation less than 52% in ambient environment.


Author(s):  
Juan Luis Pantoja-Pertegal ◽  
Antonio Díaz-Parralejo ◽  
Antonio Macías-García ◽  
J.Sánchez González ◽  
Eduardo M. Cuerda-Correa

Sign in / Sign up

Export Citation Format

Share Document