Severe acute neurotoxicity reflects absolute intra-carotid 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine dose in non-human primates

Author(s):  
SA Norris ◽  
White HCB ◽  
A Tanenbaum ◽  
EL Williams ◽  
C Cruchaga ◽  
...  
Keyword(s):  
2010 ◽  
Vol 53 (2) ◽  
pp. 85-91
Author(s):  
Jiří Kassa ◽  
Jana Žďárová Karasová ◽  
Sandra Tesařová ◽  
Kamil Musílek ◽  
Kamil Kuča

The ability of newly developed oximes (K347, K628) to reduce tabun-induced acute neurotoxic signs and symptoms was compared with currently available oximes (obidoxime, HI-6) using a functional observational battery. The neuroprotective effects of the oximes studied (K347, K628, obidoxime, HI-6) combined with atropine on rats poisoned with tabun at a sublethal dose (220 μg/kg i.m.; 80 % of LD50 value) were evaluated. Tabun-induced neurotoxicity was monitored by a functional observational battery and automatic measurement of motor activity at 24 hours following tabun challenge. The results indicate that all tested oximes combined with atropine enable tabun-poisoned rats to survive 24 hours following tabun challenge. Both newly developed oximes (K347, K628) combined with atropine are able to decrease tabun-induced neurotoxicity in the case of sublethal poisonings but they do not eliminate all tabun-induced acute neurotoxic signs and symptoms. Their ability to decrease the tabun-induced acute neurotoxicity is higher than that of the oxime HI-6 and it is slightly slower than the neuroprotective efficacy of obidoxime. As the neuroprotective potency of both newly developed oximes (K347, K628) is not as high as the potency of obidoxime, they are not a suitable replacement for obidoxime for the treatment of acute tabun poisonings.


2018 ◽  
Vol 30 (5) ◽  
pp. 708-714 ◽  
Author(s):  
David C. Dorman ◽  
Melanie L. Foster ◽  
Brooke Olesnevich ◽  
Brad Bolon ◽  
Aude Castel ◽  
...  

Superabsorbent sodium polyacrylate polymeric hydrogels that retain large amounts of liquids are used in disposable diapers, sanitary napkins, and other applications. These polymers are generally considered “nontoxic” with acute oral median lethal doses (LD50) >5 g/kg. Despite this favorable toxicity profile, we identified a novel toxic syndrome in dogs and rats following the ingestion of a commercial dog pad composed primarily of a polyacrylic acid hydrogel. Inappropriate mentation, cerebellar ataxia, vomiting, and intention tremors were observed within 24 h after the ingestion of up to 15.7 g/kg of the hydrogel by an adult, castrated male Australian Shepherd mix. These observations prompted an experimental study in rats to further characterize the toxicity of the hydrogel. Adult, female Sprague Dawley rats ( n = 9) were assessed before and after hydrogel ingestion (2.6–19.2 g/kg over 4 h) using a functional observation battery and spontaneous motor activity. Clinical signs consistent with neurotoxicity emerged in rats as early as 2 h after the end of hydrogel exposure, including decreased activity in an open field, hunched posture, gait changes, reduced reaction to handling, decreased muscle tone, and abnormal surface righting. Hydrogel-exposed rats also had reduced motor activity when compared with pre-exposure baseline data. Rats that ingested the hydrogel did not develop nervous system lesions. These findings support the conclusion that some pet pad hydrogel products can induce acute neurotoxicity in animals under high-dose exposure conditions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Melissa Faria ◽  
Arnau Valls ◽  
Eva Prats ◽  
Juliette Bedrossiantz ◽  
Manuel Orozco ◽  
...  

2019 ◽  
Vol 44 (7) ◽  
pp. 721-729 ◽  
Author(s):  
David Anthony Provenzano ◽  
Zachary Pellis ◽  
Leonard DeRiggi

Gadolinium-based contrast agents (GBCAs) have been suggested as off-label alternatives to iodine-based contrast agents for fluoroscopic imaging during interventional pain procedures. We report a case of accidental intrathecal administration of a GBCA during a neuraxial interventional pain procedure leading to acute gadolinium neurotoxicity, which resulted in encephalopathy and ultimately death. To our knowledge, it is the first published case of fatal intrathecal gadolinium-induced encephalopathy and the first published case of intrathecal gadoteridol causing serious neurologic complications. In addition, the case presented here is placed in context with an associated comprehensive, evidence-based review of the use of gadolinium in interventional pain procedures, addressing gadolinium chemistry and pharmacologic properties, neurotoxicity and radiology. Physicians must be aware that gadolinium poses a significant risk of acute neurotoxicity even in small doses. Until further safety research is performed, GBCAs should not be considered a safe alternative for use in neuraxial interventional spine procedures when there is a risk of inadvertent intrathecal administration.


2017 ◽  
Vol 60 ◽  
pp. 280-292 ◽  
Author(s):  
Andrea Vassallo ◽  
Michela Chiappalone ◽  
Ricardo De Camargos Lopes ◽  
Bibiana Scelfo ◽  
Antonio Novellino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document