Prediction of carbon dioxide frost point for natural gas and LNG model systems

2020 ◽  
Vol 76 ◽  
pp. 103206
Author(s):  
K. Nasrifar ◽  
M. Moshfeghian
2016 ◽  
Vol 830 ◽  
pp. 134-138 ◽  
Author(s):  
Camila Senna Figueiredo ◽  
Jailton Ferreira do Nascimento ◽  
Rony Oliveira de Sant'ana ◽  
Deborah Cordeiro de Andrade ◽  
Zaniel Souto Dantas Procópio ◽  
...  

Monoethylene glycol (MEG) is being widely applied as thermodynamic inhibitor to avoid formation of natural gas hydrates. High hydrophilicity, low toxicity, low viscosity, low solubility in liquid hydrocarbons and high capacity of dissolving salts are advantageous for the use of MEG in the natural gas production. In addition, MEG recovery can be easily achieved considering its low volatility in relation to water, which makes the process economical and environmentally feasible. The reuse of MEG is being theme of research and phase equilibrium data for the involved species are required. In this work, a experimental procedure to synthetize iron carbonate and, afterwards, determine its solubility in aqueous mixtures of MEG in the presence of carbon dioxide atmosphere have been developed. Furthermore, a series of solubility data has been measured. This work presents a worthy contribution to the description of iron carbonate aqueous solubilities in the presence of MEG and carbon dioxide, regarding the instability of the salt to respect of oxidation. Subsequently, the knowledge of the behavior of the iron carbonate solubilities is useful for the industrial unities of production of natural gas and recovery of MEG.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Bilal Hassan ◽  
Oghare Victor Ogidiama ◽  
Mohammed N. Khan ◽  
Tariq Shamim

A thermodynamic model and parametric analysis of a natural gas-fired power plant with carbon dioxide (CO2) capture using multistage chemical looping combustion (CLC) are presented. CLC is an innovative concept and an attractive option to capture CO2 with a significantly lower energy penalty than other carbon-capture technologies. The principal idea behind CLC is to split the combustion process into two separate steps (redox reactions) carried out in two separate reactors: an oxidation reaction and a reduction reaction, by introducing a suitable metal oxide which acts as an oxygen carrier (OC) that circulates between the two reactors. In this study, an Aspen Plus model was developed by employing the conservation of mass and energy for all components of the CLC system. In the analysis, equilibrium-based thermodynamic reactions with no OC deactivation were considered. The model was employed to investigate the effect of various key operating parameters such as air, fuel, and OC mass flow rates, operating pressure, and waste heat recovery on the performance of a natural gas-fired power plant with multistage CLC. The results of these parameters on the plant's thermal and exergetic efficiencies are presented. Based on the lower heating value, the analysis shows a thermal efficiency gain of more than 6 percentage points for CLC-integrated natural gas power plants compared to similar power plants with pre- or post-combustion CO2 capture technologies.


2018 ◽  
Vol 200 ◽  
pp. 269-281 ◽  
Author(s):  
Alessandra de Carvalho Reis ◽  
José Luiz de Medeiros ◽  
Giovani Cavalcanti Nunes ◽  
Ofélia de Queiroz Fernandes Araújo

Author(s):  
Brian Hollon ◽  
Erlendur Steinthorsson ◽  
Adel Mansour ◽  
Vincent McDonell ◽  
Howard Lee

This paper discusses the development and testing of a full-scale micro-mixing lean-premix injector for hydrogen and syngas fuels that demonstrated ultra-low emissions and stable operation without flashback for high-hydrogen fuels at representative full-scale operating conditions. The injector was fabricated using Macrolamination technology, which is a process by which injectors are manufactured from bonded layers. The injector utilizes sixteen micro-mixing cups for effective and rapid mixing of fuel and air in a compact package. The full scale injector is rated at 1.3 MWth when operating on natural gas at 12.4 bar (180 psi) combustor pressure. The injector operated without flash back on fuel mixtures ranging from 100% natural gas to 100% hydrogen and emissions were shown to be insensitive to operating pressure. Ultra-low NOx emissions of 3 ppm were achieved at a flame temperature of 1750 K (2690 °F) using a fuel mixture containing 50% hydrogen and 50% natural gas by volume with 40% nitrogen dilution added to the fuel stream. NOx emissions of 1.5 ppm were demonstrated at a flame temperature over 1680 K (2564 °F) using the same fuel mixture with only 10% nitrogen dilution, and NOx emissions of 3.5 ppm were demonstrated at a flame temperature of 1730 K (2650 °F) with only 10% carbon dioxide dilution. Finally, using 100% hydrogen with 30% carbon dioxide dilution, 3.6 ppm NOx emissions were demonstrated at a flame temperature over 1600 K (2420 °F). Superior operability was achieved with the injector operating at temperatures below 1470 K (2186 °F) on a fuel mixture containing 87% hydrogen and 13% natural gas. The tests validated the micro-mixing fuel injector technology and the injectors show great promise for use in future gas turbine engines operating on hydrogen, syngas or other fuel mixtures of various compositions.


Author(s):  
Shane Coogan ◽  
Xiang Gao ◽  
Aaron McClung ◽  
Wenting Sun

Existing kinetic mechanisms for natural gas combustion are not validated under supercritical oxy-fuel conditions because of the lack of experimental validation data. Our studies show that different mechanisms have different predictions under supercritical oxy-fuel conditions. Therefore, preliminary designers may experience difficulties when selecting a mechanism for a numerical model. This paper evaluates the performance of existing chemical kinetic mechanisms and produces a reduced mechanism for preliminary designers based on the results of the evaluation. Specifically, the mechanisms considered were GRI-Mech 3.0, USC-II, San Diego 204-10-04, NUIG-I, and NUIG-III. The set of mechanisms was modeled in Cantera and compared against the literature data closest to the application range. The high pressure data set included autoignition delay time in nitrogen and argon diluents up to 85 atm and laminar flame speed in helium diluent up to 60 atm. The high carbon dioxide data set included laminar flame speed with 70% carbon dioxide diluent and the carbon monoxide species profile in an isothermal reactor with up to 95% carbon dioxide diluent. All mechanisms performed adequately against at least one dataset. Among the evaluated mechanisms, USC-II has the best overall performance and is preferred over the other mechanisms for use in the preliminary design of supercritical oxy-combustors. This is a significant distinction; USC-II predicts slower kinetics than GRI-Mech 3.0 and San Diego 2014 at the combustor conditions expected in a recompression cycle. Finally, the global pathway selection method was used to reduce the USC-II model from 111 species, 784 reactions to a 27 species, 150 reactions mechanism. Performance of the reduced mechanism was verified against USC-II over the range relevant for high inlet temperature supercritical oxy-combustion.


2000 ◽  
Vol 29 (4) ◽  
pp. 249-268 ◽  
Author(s):  
Yoshiyuki Takeuchi ◽  
Shogo Hironaka ◽  
Yutaka Shimada ◽  
Kenji Tokumasa

2019 ◽  
Author(s):  
Omid Taheri Qazvini ◽  
Shane G. Telfer

<div>Efficient and sustainable methods for carbon dioxide (CO2) capture are essential. Its atmospheric</div><div>concentration must be reduced to meet climate change targets, and its remediation from chemical</div><div>feedstocks and natural gas is vital. While mature technologies involving chemical reactions that trap the</div><div>CO2 do exist, they have many drawbacks. Porous materials with void spaces that are complementary in</div><div>size and electrostatic potential to CO2 offer an alternative. In these materials, the molecular CO2 guests</div><div>are trapped by noncovalent interactions, hence they can be recycled by releasing the CO2 with a low</div><div>energy penalty. Porous materials that are selective towards CO2 when it is present with an array of</div><div>competing gases are challenging to produce. Here, we show how a metal-organic framework, termed</div><div>MUF-16 (MUF = Massey University Framework), is a ‘universal’ adsorbent for CO2 that sequesters</div><div>CO2 from a broad palette of gas streams with record selectivities over competing gases. The position of</div><div>the CO2 molecules captured in the framework pores was determined crystallographically to illustrate</div><div>how complementary noncovalent interactions envelop the guest molecules. The pore environment has a</div><div>low affinity for all other gases, which underpins the benchmark selectivity of MUF-16 for CO2 over</div><div>methane, hydrogen and acetylene. Breakthrough gas separations under dynamic conditions benefit from</div><div>short time lags in the elution of the weakly-adsorbed component to deliver a repertoire of high-purity</div><div>products. MUF-16 is an inexpensive, robust, easily regernarable and recyclable adsorbent that is</div><div>universally applicable to the removal of CO2 from sources such as natural gas, syngas and chemical</div><div>feedstocks.</div>


Author(s):  
Usama J. Mizher ◽  
Peter A. Velmisov

Abstract. The search for new solutions in the field of energy, preventing negative impact on the environment, is one of the priority tasks for modern society. Natural gas occupies a stable position in the demand of the UES of Russia for fossil fuel. Biogas is a possible alternative fuel from organic waste. Biogas has an increased content of carbon dioxide, which affects the speed of flame propagation, and a lower content of methane, which reduces its heat of combustion. However, the combined combustion of natural gas and biogas, provided that the mixture of fuel and oxidizer is well mixed, can, on the one hand, reduce the maximum adiabatic temperature in the combustion chamber of power boilers at TPPs, and, on the other, increase the stability of biogas combustion. For the combined combustion of natural gas and biogas in operating power boilers, it is necessary to reconstruct the existing burners. For a high-quality reconstruction of burners capable of providing stable and low-toxic combustion of fuel, it is important to have theoretical data on the combustion effect of combustion of combinations of organic fuels on the temperature distribution in the combustion zone and on its maximum value. In this paper, self-similar solutions of the energy equation for axisymmetric motion of a liquid (gas) in a model of a viscous incompressible medium are obtained. Basing on them, a stationary temperature field in swirling jets is constructed. A set of programs based on the ANSYS Fluent software solver has been developed for modeling and researching of thermal and gas-dynamic processes in the combustion chamber. On the basis of the k - ϵ (realizable) turbulence model, the combustion process of a swirling fuel-air mixture is simulated. The results of an analytical and numerical study of the temperature and carbon dioxide distribution in the jet are presented.


Sign in / Sign up

Export Citation Format

Share Document