Fracture initiation pressure and failure modes of tree-type hydraulic fracturing in gas-bearing coal seams

2020 ◽  
Vol 77 ◽  
pp. 103260 ◽  
Author(s):  
Shaojie Zuo ◽  
Zhaolong Ge ◽  
Kai Deng ◽  
Jingwei Zheng ◽  
Haomin Wang
2020 ◽  
Vol 10 (3) ◽  
pp. 1153 ◽  
Author(s):  
Shirong Cao ◽  
Xiyuan Li ◽  
Zhe Zhou ◽  
Yingwei Wang ◽  
Hong Ding

Coalbed methane is not only a clean energy source, but also a major problem affecting the efficient production of coal mines. Hydraulic fracturing is an effective technology for enhancing the coal seam permeability to achieve the efficient extraction of methane. This study investigated the effect of a coal seam reservoir’s geological factors on the initiation pressure and fracture propagation. Through theoretical analysis, a multi-layered coal seam initiation pressure calculation model was established based on the broken failure criterion of maximum tensile stress theory. Laboratory experiments were carried out to investigate the effects of the coal seam stress and coal seam dip angle on the crack initiation pressure and fracture propagation. The results reveal that the multi-layered coal seam hydraulic fracturing initiation pressure did not change with the coal seam inclination when the burial depth was the same. When the dip angle was the same, the initiation pressure linearly increased with the reservoir depth. A three-dimensional model was established to simulate the actual hydraulic fracturing crack propagation in multi-layered coal seams. The results reveal that the hydraulic crack propagated along the direction of the maximum principal stress and opened in the direction of the minimum principal stress. As the burial depth of the reservoir increased, the width of the hydraulic crack also increased. This study can provide the theoretical foundation for the effective implementation of hydraulic fracturing in multi-layered coal seams.


2013 ◽  
Vol 6 (1) ◽  
pp. 30-35 ◽  
Author(s):  
Li Yuwei ◽  
Ai Chi

There are lots of cleats, fractures and many other structure weak planes in coal seams, which make the bullet holes and cleats intersecting. During the hydraulic fracturing process in coal seams, fractures will initiate at coal rock body of borehole wall, and cleats or fractures are different from conventional reservoirs. Thus a new model for initiation pressure calculation during coal seams fracturing should be established. Based on the rock mechanics and elasticity mechanics, and also on network distribution characteristics of coal seam cleats and the space position relationships between the intersected bullet holes and cleats, stress distribution around the bullet holes and at the cleats wall were deducted. The model was established in tensile failure condition. The calculated initiation fracture pressure of Well HX-3 was 10.71MPa. The pressure obtained from bottom hole pressure gauge was 11.24MPa. The relative error was 4.72%. The model could be applied for initiation pressure calculation during hydraulic fracturing process in coal seams. The fractures would initiate at the cleats during fracturing.


Energies ◽  
2016 ◽  
Vol 9 (5) ◽  
pp. 358 ◽  
Author(s):  
Yiyu Lu ◽  
Yugang Cheng ◽  
Zhaolong Ge ◽  
Liang Cheng ◽  
Shaojie Zuo ◽  
...  

2021 ◽  
pp. 1-43
Author(s):  
Juan Camilo Acosta ◽  
Son T. Dang ◽  
Carl H. Sondergeld ◽  
Chandra S. Rai

Hydraulic fracturing (HF) and horizontal drilling are essential to the development of shale gas and oil. Production depends on the stimulation success. During fracture initiation, propagation, and closure, cracks emit acoustic waves; these can be monitored in real time as microseismics in the field and as acoustic emissions (AEs) in the laboratory. AEs are the laboratory equivalent of field-scale microseismics and contain detailed information about HF fracture mechanics. The number of acoustic events correlates with the number of induced fractures and hence the stimulation volume. Three HF protocols under dry conditions were carried out on Tennessee sandstone: (1) a constant injection rate, (2) a precyclic injection, and (3) a variable-rate injection test. All three tests were performed under the same principal stress conditions: vertical stress of 10.3 MPa (1500 psi), minimum horizontal stress of 3.5 MPa (500 psi), and maximum horizontal stress of 20.7 MPa (3000 psi). In total, 16 piezoelectric transducers were mounted around a cylindrical sample to record the AEs. We have performed postsignal processing to extract AE event attributes, including the amplitudes, signal-to-noise ratio, arrival time, event location (with the velocity-anisotropy input), and frequency analyses. The AE events associated with the constant-rate injection test possessed the lowest frequencies (150–270 kHz). The variable-rate test AE events possessed higher frequencies (160–310 kHz), whereas the precyclic injection had events with the highest frequencies, peaking at 330 kHz. Acoustic events before failure had lower amplitudes, but higher frequency compared to those recorded postbreakdown, suggesting different failure modes. Precyclic injection induced the greatest number of locatable events before and after failure.


2013 ◽  
Vol 868 ◽  
pp. 319-325 ◽  
Author(s):  
Yi Lei ◽  
Wen Bin Wu

Mathematical model based on elasticity is not suitable for soft seam hydraulic fracturing mechanism study because its intensity is small, Poisson's ratio is relatively large, and its prone to plastic deformation. Based on plastic mechanics, the theory of large deformation and fracture mechanics theory, hydraulic fracturing of soft coal seam is divided into three phases, namely, coal bed compaction, fracture initiation and crack propagation from the view of the deformation mechanism, the occurring and developing mechanism. The initiation pressure of soft seams considered strain softening character after plastic deformation is obtained on the basis of above. The result shows that the initiation pressure is related to elastic modulus, Poisson's ratio, the angle of internal friction and residual strength. Elastic modulus is inversely proportional to the initiation pressure, the greater its value, the smaller the initiation pressure; but Poisson's ratio, the angle of internal friction and the residual strength and fracture initiation pressure is directly proportional relationship, the greater its value, since the smaller the crack pressure.


2015 ◽  
Vol 17 (5) ◽  
pp. 2799-2812 ◽  
Author(s):  
H. B. Jung ◽  
K. C. Carroll ◽  
S. Kabilan ◽  
D. J. Heldebrant ◽  
D. Hoyt ◽  
...  

A reversible CO2-triggered volume expansion significantly lowers the fracture initiation pressure in highly impermeable igneous rock as compared to conventional fracturing fluids.


Author(s):  
V.S. Brigida ◽  
◽  
Yu.V. Dmitrak ◽  
O.Z. Gabaraev ◽  
V.I. Golik ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document