Hydraulic Fracturing Mechanical Mechanism Analyses for Soft Seams Considering Strain Softening Character

2013 ◽  
Vol 868 ◽  
pp. 319-325 ◽  
Author(s):  
Yi Lei ◽  
Wen Bin Wu

Mathematical model based on elasticity is not suitable for soft seam hydraulic fracturing mechanism study because its intensity is small, Poisson's ratio is relatively large, and its prone to plastic deformation. Based on plastic mechanics, the theory of large deformation and fracture mechanics theory, hydraulic fracturing of soft coal seam is divided into three phases, namely, coal bed compaction, fracture initiation and crack propagation from the view of the deformation mechanism, the occurring and developing mechanism. The initiation pressure of soft seams considered strain softening character after plastic deformation is obtained on the basis of above. The result shows that the initiation pressure is related to elastic modulus, Poisson's ratio, the angle of internal friction and residual strength. Elastic modulus is inversely proportional to the initiation pressure, the greater its value, the smaller the initiation pressure; but Poisson's ratio, the angle of internal friction and the residual strength and fracture initiation pressure is directly proportional relationship, the greater its value, since the smaller the crack pressure.

2018 ◽  
Vol 10 (1) ◽  
pp. 289-296 ◽  
Author(s):  
Ligang Zhang ◽  
Xiao Fei Fu ◽  
G. R. Liu ◽  
Shi Bin Li ◽  
Wei Li ◽  
...  

AbstractIn this work, the intensive theoretical study and laboratory tests are conducted to evaluate the craters morphology via the flat-ended indenter test, relationship of indentation hardness (HRI) and uniaxial compressive strength (UCS). Based on the stress distribution, failure process and Mohr–Coulomb failure criterion, the mathematical mechanical models are presented to express the formation conditions of “pulverized zone” and “volume break”. Moreover, a set of equations relating the depth and apex angle of craters, the ratio of indentation hardness and uniaxial compressive strength, the angle of internal friction and Poisson’s ratio are obtained. The depth, apex angle of craters and ratio of indentation hardness and uniaxial compressive strength are all affected by the angle of internal friction and Poisson’s ratio. The proposed models are also verified by experiments of rock samples which are cored from Da Qing oilfield, the percentage error between the test and calculated results for depth, apex angle of craters and the ratio of HRI and UCS are mainly in the range of –1.41%–8.92%, –5.91%–3.94% and –8.22%–13.22% respectively for siltstone, volcanic tuff, volcanic breccia, shale, sand stone and glutenite except mudstone, which demonstrates that our proposed models are robust and effective for brittle rock.


2020 ◽  
pp. 34-35
Author(s):  
M.M. Matlin ◽  
V.A. Kazankin ◽  
E.N. Kazankina ◽  
A.I. Mozgunova ◽  
A.I. Sotnikova

A non-destructive method for assessing the plastic deformation of a metal after processing a product is proposed, based on a change in the elastic properties of the material. Keywords metal, elastic properties, modulus of elasticity, Poisson's ratio, plastic deformation, non-destructive method, tension. [email protected]


2013 ◽  
Vol 6 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Ai Chi ◽  
Li Yuwei

Coal body is a type of fractured rock mass in which lots of cleat fractures developed. Its mechanical properties vary with the parametric variation of coal rock block, face cleat and butt cleat. Based on the linear elastic theory and displacement equivalent principle and simplifying the face cleat and butt cleat as multi-bank penetrating and intermittent cracks, the model was established to calculate the elastic modulus and Poisson's ratio of coal body combined with cleat. By analyzing the model, it also obtained the influence of the parameter variation of coal rock block, face cleat and butt cleat on the elastic modulus and Poisson's ratio of the coal body. Study results showed that the connectivity rate of butt cleat and the distance between face cleats had a weak influence on elastic modulus of coal body. When the inclination of face cleat was 90°, the elastic modulus of coal body reached the maximal value and it equaled to the elastic modulus of coal rock block. When the inclination of face cleat was 0°, the elastic modulus of coal body was exclusively dependent on the elastic modulus of coal rock block, the normal stiffness of face cleat and the distance between them. When the distance between butt cleats or the connectivity rate of butt cleat was fixed, the Poisson's ratio of the coal body initially increased and then decreased with increasing of the face cleat inclination.


2021 ◽  
pp. 107754632110026
Author(s):  
Zhou Sun ◽  
Siyu Chen ◽  
Xuan Tao ◽  
Zehua Hu

Under high-speed and heavy-load conditions, the influence of temperature on the gear system is extremely important. Basically, the current work on the effect of temperature mostly considers the flash temperature or the overall temperature field to cause expansion at the meshing point and then affects nonlinear factors such as time-varying meshing stiffness, which lead to the deterioration of the dynamic transmission. This work considers the effect of temperature on the material’s elastic modulus and Poisson’s ratio and relates the temperature to the time-varying meshing stiffness. The effects of temperature on the elastic modulus and Poisson’s ratio are expressed as functions and brought into the improved energy method stiffness calculation formula. Then, the dynamic characteristics of the gear system are analyzed. With the bifurcation diagram, phase, Poincaré, and fast Fourier transform plots of the gear system, the influence of temperature on the nonlinear dynamics of the gear system is discussed. The numerical analysis results show that as the temperature increases, the dynamic response of the system in the middle-speed region gradually changes from periodic motion to chaos.


2021 ◽  
Author(s):  
Meng Meng ◽  
Luke Frash ◽  
James Carey ◽  
Wenfeng Li ◽  
Nathan Welch ◽  
...  

Abstract Accurate characterization of oilwell cement mechanical properties is a prerequisite for maintaining long-term wellbore integrity. The drawback of the most widely used technique is unable to measure the mechanical property under in situ curing environment. We developed a high pressure and high temperature vessel that can hydrate cement under downhole conditions and directly measure its elastic modulus and Poisson's ratio at any interested time point without cooling or depressurization. The equipment has been validated by using water and a reasonable bulk modulus of 2.37 GPa was captured. Neat Class G cement was hydrated in this equipment for seven days under axial stress of 40 MPa, and an in situ measurement in the elastic range shows elastic modulus of 37.3 GPa and Poisson's ratio of 0.15. After that, the specimen was taken out from the vessel, and setted up in the triaxial compression platform. Under a similar confining pressure condition, elastic modulus was 23.6 GPa and Possion's ratio was 0.26. We also measured the properties of cement with the same batch of the slurry but cured under ambient conditions. The elastic modulus was 1.63 GPa, and Poisson's ratio was 0.085. Therefore, we found that the curing condition is significant to cement mechanical property, and the traditional cooling or depressurization method could provide mechanical properties that were quite different (50% difference) from the in situ measurement.


1973 ◽  
Vol 13 (03) ◽  
pp. 163-174
Author(s):  
Alexander Blake ◽  
Maurice Zaslawsky

Abstract Presented here are results of experimental and theoretical investigations of the behavior of downhole pipe, surrounded by Overton sand or gravel, when subjected to shock from nuclear explosion. The principal effects investigated arelongitudinal friction between the pipe and the stemming material andresistance offered by the stemming material to transverse motion of the pipe. Introduction Stemming materials such as Overton sand and pea gravel are widely used in underground nuclear pea gravel are widely used in underground nuclear testing to ensure containment of the explosion. Present-day theories of mechanics suitable for predicting stresses and displacements within an predicting stresses and displacements within an array of particles of such materials are rather limited because of the stress-strain-time behavior and complicated boundary conditions involved. Thus, measurements representing gross effects only and linearized models of analysis must be relied upon in making the majority of engineering decisions where soil-structure interactions are encountered. Furthermore, because of the number of variables and hardware constraints present in designing deep-hole emplacement systems, the emphasis should be on obtaining experimental data on fullscale or nearly full-scale structural components in association with stemming materials of actual field quality. The experiment discussed in this paper was directed toward the development of basic mechanical properties such as modulus of elasticity, friction characteristics during axial (longitudinal) pipe motion through stemming materials, resistance pipe motion through stemming materials, resistance of stemming materials to transverse pipe displacement, and related physical phenomena that may have further bearing on the usual mechanical properties employed in various design analyses. properties employed in various design analyses. During evaluation of the basic mechanical properties, an attempt was made to develop a properties, an attempt was made to develop a Poisson's ratio type of data for the stemming Poisson's ratio type of data for the stemming materials at hand by using both specialized equipment and standard test equipment normally employed in soil mechanics. The results of the study, however, should be interpreted with due regard to the particulate nature of stemming materials, which do not represent a continuum with well defined stress-strain relationships. To obtain meaningful data on friction and transverse resistance characteristics, a special test rig was designed with particular emphasis on minimizing the scale effects and experimental errors usually encountered. In mechanics the term "friction" is the resistance to motion of two moving objects or surfaces that touch. In this paper we speak of several different types of micron, and therefore some clarification is needed. The friction between sand or gravel and the down-hole pipe as we attempt to move the pipe is one type of friction. A similar type is the friction developed between sand or gravel and the steel block it rubs against in the direct shear test apparatus. Those two examples of friction are rather straightforward, however, the following two present some confusion because they are both referred to as internal friction:Internal friction as used by engineering scientists, physicists, and metallurgists may be defined as the conversion of the mechanical energy of a vibrating solid into heat. This is also referred to as the damping capacity and corresponds to a phase difference between the applied stress and phase difference between the applied stress and its resultant strain.b soil mechanics the concept of internal friction corresponds to friction between the surfaces of individual grains of sand or gravel. In granular materials, both kinds of internal friction occur. In this paper the term "internal friction" is referred to extensively and is used exclusively in the sense of friction between particles. particles. FUNDAMENTALS OF SOIL MECHANICS The mechanical behavior of earth materials such as sand or gravel can be described by suitable physical constants reflecting certain physical constants reflecting certain stress-deformation relations that may then be applied in customary engineering predictions. In dealing with the rigidity of rocks, Young's modulus, E, and Poisson's ratio, are commonly used, and soil Poisson's ratio, are commonly used, and soil mechanics utilizes basic concepts of the theory of elasticity. By analogy to this well established practice, related concepts utilizing elastic practice, related concepts utilizing elastic constants in loading and unloading can be made applicable to stemming materials. SPEJ P. 163


Sign in / Sign up

Export Citation Format

Share Document