Rock physics templates for anisotropic and heterogeneous reservoir rocks considering mineralogy, texture and pore-filling fluid

Author(s):  
O.C. Valdiviezo-Mijangos ◽  
L.D. Jaimes-Tejeda ◽  
R. Nicolás-López ◽  
R. Rodríguez-Ramos ◽  
F.J. Sabina
Geophysics ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. T55-T66 ◽  
Author(s):  
Fabian Wenzlau ◽  
Tobias M. Müller

Numerical modeling of seismic waves in heterogeneous, porous reservoir rocks is an important tool for interpreting seismic surveys in reservoir engineering. Various theoretical studies derive effective elastic moduli and seismic attributes from complex rock properties, involving patchy saturation and fractured media. To confirm and further develop rock-physics theories for reservoir rocks, accurate numerical modeling tools are required. Our 2D velocity-stress, finite-difference scheme simulates waves within poroelastic media as described by Biot’s theory. The scheme is second order in time, contains high-order spatial derivative operators, and is parallelized using the domain-decomposition technique. A series of numerical experiments that are compared to exact analytical solutions allow us to assess the stability conditions and dispersion relations of the explicit poroelastic finite-differ-ence method. The focus of the experiments is to model wave-induced flow accurately in the vicinity of mesoscopic heterogeneities such as cracks and gas inclusions in partially saturated rocks. For that purpose, a suitable numerical setup is applied to extract seismic attenuation and dispersion from quasi-static experiments. Our results confirm that finite-difference modeling is a valuable tool to simulate wave propa-gation in heterogeneous poroelastic media, provided the temporal and spatial scales of the propagating waves and of the induced fluid-diffusion processes are resolved properly.


Geophysics ◽  
1998 ◽  
Vol 63 (5) ◽  
pp. 1604-1617 ◽  
Author(s):  
Zhijing Wang ◽  
Michael E. Cates ◽  
Robert T. Langan

A carbon dioxide (CO2) injection pilot project is underway in Section 205 of the McElroy field, West Texas. High‐resolution crosswell seismic imaging surveys were conducted before and after CO2 flooding to monitor the CO2 flood process and map the flooded zones. The velocity changes observed by these time‐lapse surveys are typically on the order of −6%, with maximum values on the order of −10% in the vicinity of the injection well. These values generally agree with laboratory measurements if the effects of changing pore pressure are included. The observed dramatic compressional ([Formula: see text]) and shear ([Formula: see text]) velocity changes are considerably greater than we had initially predicted using the Gassmann (1951) fluid substitution analysis (Nolen‐Hoeksema et al., 1995) because we had assumed reservoir pressure would not change from survey to survey. However, the post‐CO2 reservoir pore fluid pressure was substantially higher than the original pore pressure. In addition, our original petrophysical data for dry and brine‐saturated reservoir rocks did not cover the range of pressures actually seen in the field. Therefore, we undertook a rock physics study of CO2 flooding in the laboratory, under the simulated McElroy pressures and temperature. Our results show that the combined effects of pore pressure buildup and fluid substitution caused by CO2 flooding make it petrophysically feasible to monitor the CO2 flood process and to map the flooded zones seismically. The measured data show that [Formula: see text] decreases from a minimum 3.0% to as high as 10.9%, while [Formula: see text] decreases from 3.3% to 9.5% as the reservoir rocks are flooded with CO2 under in‐situ conditions. Such [Formula: see text] and [Formula: see text] decreases, even if averaged over all the samples measured, are probably detectable by either crosswell or high‐resolution surface seismic imaging technologies. Our results show [Formula: see text] is sensitive to both the CO2 saturation and the pore pressure increase, but [Formula: see text] is particularly sensitive to the pore pressure increase. As a result, the combined [Formula: see text] and [Formula: see text] changes caused by the CO2 injection may be used, at least semiquantitatively, to separate CO2‐flooded zones with pore pressure buildup from those regions without pore pressure buildup or to separate CO2 zones from pressured‐up, non‐CO2 zones. Our laboratory results show that the largest [Formula: see text] and [Formula: see text] changes caused by CO2 injection are associated with high‐porosity, high‐permeability rocks. In other words, CO2 flooding and pore pressure buildup decrease [Formula: see text] and [Formula: see text] more in high‐porosity, high‐permeability samples. Therefore, it may be possible to delineate such high‐porosity, high‐permeability streaks seismically in situ. If the streaks are thick enough compared to seismic resolution, they can be identified by the larger [Formula: see text] or [Formula: see text] changes.


2021 ◽  
Vol 873 (1) ◽  
pp. 012020
Author(s):  
T B Nainggolan ◽  
M P Adhar ◽  
I Setiadi

Abstract Barakan Sub-basin is assessed as potential basin for hydrocarbon reserves in the eastern region of Indonesia because it is adjacent to Masela block giant gas field. Reservoir rocks in this sub-basin are sandstones from Middle Jurassic (Lower Flamengo Formation) until Oligocene (Adi member Formation). Main sandstone reservoir rocks are knowingly studied to have good porosity in Upper Flamengo, Kopae, Ekmai and Adi member Formations. But, there is no significant study to determine sandstone reservoir distribution that have good porosity quality. Therefore, an integrated method of inversion and rock physics study are needed to determine sandstone reservoir quality. This study uses 2D marine seismic post-stack time migration and 2 wells namely Barakan-1 and Koba-1 wells. Sensitivity analysis with cross-plot of gamma ray log versus acoustic impedance values range of 20-60 API and 9000-42000 (ft/s)*(g/cc) shows a strong correlation of good porosity sandstone to low impedance in Ekmai Formation of both wells. Model based of post-stack inversion reveals sandstone distribution in Ekmai Formation of both wells. Time structure maps of top and bottom horizons in Ekmai Formation indicates Barakan-1 well within anticline height structure and Koba-1 well are deposited in a middle of sub-littoral environment.


2015 ◽  
Vol 3 (4) ◽  
pp. SAE85-SAE93 ◽  
Author(s):  
Per Avseth ◽  
Tor Veggeland

We have developed a methodology to create easy-to-implement rock-physics attributes that can be used to screen for reservoir sandstones and hydrocarbon pore fill from seismic inversion data. Most seismic attributes are based on the empirical relationships between reservoir properties and seismic observables. We have honored the physical properties of the rocks by defining attributes that complied with calibrated rock-physics models. These attributes included the fluid saturation sensitive curved pseudo-elastic impedance (CPEI) and the rock stiffness/lithology attribute pseudo-elastic impedance for lithology (PEIL). We found that the CPEI attribute correlated nicely with saturation and resistivity, whereas the PEIL attribute in practice was a scaled version of the shear modulus and correlated nicely with porosity. We determined the use of these attributes on well log and seismic inversion data from the Norwegian Sea, and we successfully screened out reservoir rocks filled with either water or hydrocarbons.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. E69-E79 ◽  
Author(s):  
Remy Agersborg ◽  
Tor Arne Johansen ◽  
Gary Mavko ◽  
Tiziana Vanorio

Compaction of siliciclastic sediments leads to an increase in their stiffness parameters and seismic velocities. Although mechanical compaction implies a reduction of porosity and closing of compliant pores, chemical compaction may alter the mineral properties, the cementing of grain contacts, and the pore volume. The ability of rock physics models to quantify such effects on seismic observables will aid hydrocarbon exploration. A framework was designed for modeling compaction effects by use of a so-called coated inclusion model that eliminates the need of using a hybrid approach through combining different theories. A basic feature of the model is that the inclusion is defined by a kernel representing the pore, which is surrounded by shells that may individually have different elastic properties from those of the pore-filling material and the background matrix. The modeling can be designed to explore seismic effects of various texture perturbations, including contact cementing and pore-filling processes. The numerical modelings seem to be consistent with the results obtained from other rock physics models. The model allows for the possibility of including small-scale heterogeneities within the rock texture and estimating frequency dispersion together with attenuation due to pore fluid flow. A basic weakness of the method is the relatively large number of parameters needed to describe a porous rock, which will always limit its practical usage. However, its basic physical foundation may provide a reference for understanding the qualitative and quantitative effects of various cementation scenarios on seismic parameters.


Sign in / Sign up

Export Citation Format

Share Document