Detailed structure of a new bioactive glass composition for the design of bone repair materials

2017 ◽  
Vol 475 ◽  
pp. 10-14 ◽  
Author(s):  
Ailing Li ◽  
Huihui Ren ◽  
Yang Cui ◽  
Chao Wang ◽  
Xiaojuan Zhou ◽  
...  
2020 ◽  
Vol 7 (3) ◽  
pp. 303-311 ◽  
Author(s):  
Deqiu Huang ◽  
Fujian Zhao ◽  
Wendong Gao ◽  
Xiaofeng Chen ◽  
Zhouyi Guo ◽  
...  

Abstract Strontium-substituted bioactive glass (Sr-BG) has shown superior performance in bone regeneration. Sr-BG-induced osteogenesis has been extensively studied; however, Sr-BG-mediated osteoclastogenesis and the underlying molecular mechanism remain unclear. It is recognized that the balance of osteogenesis and osteoclastogenesis is closely related to bone repair, and the receptor activators of nuclear factor kappaB ligand (RANKL) signaling pathway plays a key role of in the regulation of osteoclastogenesis. Herein, we studied the potential impact and underling mechanism of strontium-substituted sub-micron bioactive glass (Sr-SBG) on RANKL-induced osteoclast activation and differentiation in vitro. As expected, Sr-SBG inhibited RANKL-mediated osteoclastogenesis significantly with the experimental performance of decreased mature osteoclasts formation and downregulation of osteoclastogenesis-related gene expression. Furthermore, it was found that Sr-SBG might suppress osteoclastogenesis by the combined effect of strontium and silicon released through inhibition of RANKL-induced activation of p38 and NF-κB pathway. These results elaborated the effect of Sr-SBG-based materials on osteoclastogenesis through RANKL-induced downstream pathway and might represent a significant guidance for designing better bone repair materials.


2019 ◽  
Vol 107 (7) ◽  
pp. 1491-1512 ◽  
Author(s):  
Jie Liao ◽  
Shuai Wu ◽  
Kun Li ◽  
Yubo Fan ◽  
Nicholas Dunne ◽  
...  

2017 ◽  
Vol 5 (12) ◽  
pp. 2245-2253 ◽  
Author(s):  
Yi-Xuan Chen ◽  
Rong Zhu ◽  
Zheng-liang Xu ◽  
Qin-Fei Ke ◽  
Chang-Qing Zhang ◽  
...  

The self-assembly of pifithrin-α-loaded layered double hydroxide/chitosan nanohybrid composites as a drug delivery system was demonstrated for the first time to improve the cytocompatibility and enhance the osteoinductivity for the treatment of bone defects.


Bone ◽  
2010 ◽  
Vol 47 ◽  
pp. S432
Author(s):  
Shihui Chen ◽  
Tao Tang ◽  
Zhong Liu ◽  
Poying Lau ◽  
Xinhui Xie ◽  
...  

2013 ◽  
Vol 738 ◽  
pp. 26-29 ◽  
Author(s):  
Ting Ting Yan ◽  
Yong Shun Cui ◽  
Qing Hua Chen

Hydroxyapatite is well used as bone repair materials, due to its properties that can be combined with strontium to improve mechanical property and degradation property. In this article, hydroxyapatite whiskers with different amount of doped strontium were prepared with diammonium phosphate, calcium nitrate and strontium nitrate at 94 °C. Fourier transform infrared spectroscopy (FTIR) was used to identify the functional groups. X-ray diffraction (XRD) analysis was carried out to study the phase composition and crystallinity of the whisker. The morphology of the whiskers was characterized by scanning electron microscope (SEM). It was indicated that strontium can be doped in hydroxyapatite with proper process and then the strontium-doped hydroxyapatite whiskers were produced successfully.


Sign in / Sign up

Export Citation Format

Share Document