UN-UB2 Composite Fuel Material; Improved Water Tolerance with Integral Burnable Absorber

2021 ◽  
pp. 153471
Author(s):  
J. Turner ◽  
J. Buckley ◽  
R.N. Worth ◽  
M. Salata-Barnett ◽  
M.J.J Schmidt ◽  
...  
2020 ◽  
Vol 529 ◽  
pp. 151891
Author(s):  
Joel Turner ◽  
Simon Middleburgh ◽  
Tim Abram

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 946
Author(s):  
Grêce Abdallah ◽  
Jean-Marc Giraudon ◽  
Rim Bitar ◽  
Nathalie De Geyter ◽  
Rino Morent ◽  
...  

Trichloroethylene (TCE) removal was investigated in a post-plasma catalysis (PPC) configuration in nearly dry air (RH = 0.7%) and moist air (RH = 15%), using, for non-thermal plasma (NTP), a 10-pin-to-plate negative DC corona discharge and, for PPC, Ce0.01Mn as a catalyst, calcined at 400 °C (Ce0.01Mn-400) or treated with nitric acid (Ce0.01Mn-AT). One of the key points was to take advantage of the ozone emitted from NTP as a potential source of active oxygen species for further oxidation, at a very low temperature (100 °C), of untreated TCE and of potential gaseous hazardous by-products from the NTP. The plasma-assisted Ce0.01Mn-AT catalyst presented the best CO2 yield in dry air, with minimization of the formation of gaseous chlorinated by-products. This result was attributed to the high level of oxygen vacancies with a higher amount of Mn3+, improved specific surface area and strong surface acidity. These features also allow the promotion of ozone decomposition efficiency. Both catalysts exhibited good stability towards chlorine. Ce0.01Mn-AT tested in moist air (RH = 15%) showed good stability as a function of time, indicating good water tolerance also.


2021 ◽  
Vol 155 ◽  
pp. 108152
Author(s):  
Yahya A. Al-Zahrani ◽  
Khurram Mehboob ◽  
Daud Mohamad ◽  
Abdulsalam Alhawsawi ◽  
Fouad A. Abolaban

2015 ◽  
Vol 23 ◽  
pp. 01063 ◽  
Author(s):  
Dmitrii O. Glushkov ◽  
Pavel A. Strizhak ◽  
Ksenia Yu. Vershinina

2021 ◽  
Author(s):  
Yao-Ting Wang ◽  
Corie M. McHale ◽  
Xiqu Wang ◽  
Chung-Kai Chang ◽  
Yu-Chun Chuang ◽  
...  

A porous molecular crystal (PMC) assembled by close-packing of macrocyclic cyclotetrabenzoin acetate is an efficient adsorbent for selective CO<sub>2</sub> capture. The 7.1´7.1 Å square pore of PMC and its ester C=O group play important roles in improving its affinity for CO<sub>2</sub> molecules. Thermodynamically, the benzene walls of macrocycle strongly promote CO<sub>2</sub> adsorption via [p···p] interactions at low pressure. In addition, the polar carbonyl groups pointing inward the square channels reduce the size of aperture to a 5.0´5.0 Å square, which offers kinetic selectivity for CO<sub>2</sub> capture. The PMC features water tolerance and high structural stability under vacuum and various gas adsorption conditions, which are rare among intrinsically porous organic molecules. In mixed-gas breakthrough experiments, it exhibits efficient CO<sub>2</sub>/N<sub>2</sub> and CO<sub>2</sub>/CH<sub>4</sub> separations under kinetic flow conditions. Most importantly, the moderate adsorbate–adsorbent interaction allows the PMC to be readily regenerated, and therefore applied to pressure swing adsorption (PSA) processes. The eluted N<sub>2</sub> and CH<sub>4</sub> are obtained with over 99.9% and 99.8% purity, respectively, and the separation performance is stable for 30 cycles. Coupled with its easy synthesis, these properties make cyclotetrabenzoin acetate a promising adsorbent for CO<sub>2</sub> separations from flue and natural gases.


2021 ◽  
pp. 207-220
Author(s):  
Aleh I. Rodzkin ◽  
Evgenija V. Chernenok ◽  
Vasilij M. Sivko ◽  
Viatcheslav A. Rakovitch

The goal of investigation was assessment of environmental impact and economic efficiency of composite briquette production on the base of peat and renewable biomass. Biomass for composite briquettes was obtained from straw (cereal crops and rape) and wood residues (sawdust, chips) Experimental composite briquette were produced from the mixture of peat and biomass in relation to – 25 : 75, 50 : 50, 75 : 25. The technological cards of biomass feedstock production for 6 variants were developed. Technological cards were used for calculation of emission into the atmosphere during life cycle of biomass production and prime cost of biomass. The lowest volume of gas (SO2, NOx, CO2) and particulate matter (PM) emission was installed for biomass production from the sawdust. The highest volume of emission was installed for production of biomass from the straw with pressing it in standard bale. The volume of CO2 emission for the sawdust production was 6 kg per ton of biomass and for the standard bale of straw was 19 kg per ton of biomass. Prime cost of sawdust production (lowest) was 11 belarusian rubles per ton of biomass, for the wood chips was 19 rubles per ton and for the straw varied from 26 to 33 rubles per ton in depend of technology. It was installed that growth of biomass rate in composite briquette had a good influence on number of basic fuel characteristics (contents of ash, sulfur and moisture). The variation of calorific value of briquette was not significant in depend of biomass contents. In accordance with assessment of all characteristics the better briquettes was obtained from the peat and sawdust.


Sign in / Sign up

Export Citation Format

Share Document