Effect of reinforcement configurations on the flexural behaviors of 3D printed fiber reinforced cementitious composite (FRCC) beams

2021 ◽  
pp. 103773
Author(s):  
Jingming Cai ◽  
Zhaoliang Sheng ◽  
Xiaoyi Wang ◽  
Yizhi Fang ◽  
Jinlong Pan
Author(s):  
Valerio Di Pompeo ◽  
Archimede Forcellese ◽  
Tommaso Mancia ◽  
Michela Simoncini ◽  
Alessio Vita

AbstractThe present paper aims at studying the effect of geometric parameters and moisture content on the mechanical performances of 3D-printed isogrid structures in short carbon fiber-reinforced polyamide (namely Carbon PA). Four different geometric isogrid configurations were manufactured, both in the undried and dried condition. The dried isogrid structures were obtained by removing the moisture from the samples through a heating at 120 °C for 4 h. To measure the quantity of removed moisture, samples were weighted before and after the drying process. Tensile tests on standard specimens and buckling tests on isogrid panels were performed. Undried samples were tested immediately after 3D printing. It was observed that the dried samples are characterized by both Young modulus and ultimate tensile strength values higher than those provided by the undried samples. Similar results were obtained by the compression tests since, for a given geometric isogrid configuration, an increase in the maximum load of the dried structure was detected as compared to the undried one. Such discrepancy tends to increase as the structure with the lowest thickness value investigated is considered. Finally, scanning electron microscopy was carried out in order to analyze the fractured samples and to obtain high magnification three-dimensional topography of fractured surfaces after testing.


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 179
Author(s):  
Daiki Sunaga ◽  
Takumi Koba ◽  
Toshiyuki Kanakubo

Tensile performance of fiber-reinforced cementitious composite (FRCC) after first cracking is characterized by fiber-bridging stress–crack width relationships called bridging law. The bridging law can be calculated by an integral calculus of forces carried by individual fibers, considering the fiber orientation. The objective of this study was to propose a simplified model of bridging law for bundled aramid fiber, considering fiber orientation for the practical use. By using the pullout characteristic of bundled aramid fiber obtained in the previous study, the bridging laws were calculated for various cases of fiber orientation. The calculated results were expressed by a bilinear model, and each characteristic point is expressed by the function of fiber-orientation intensity. After that, uniaxial tension tests of steel reinforced aramid-FRCC prism specimens were conducted to obtain the crack-opening behavior and confirm the adaptability of the modeled bridging laws in crack-width evaluation. The experimental parameters are cross-sectional dimensions of specimens and volume fraction of fiber. The test results are compared with the theoretical curves calculated by using the modeled bridging law and show good agreements in each parameter.


Sign in / Sign up

Export Citation Format

Share Document