scholarly journals Appraisal of Hybrid Fiber Reinforced Engineered Cementitious Composite

Author(s):  
Maninder Singh ◽  
Babita Saini ◽  
H.D. Chalak
2016 ◽  
Vol 50 (30) ◽  
pp. 4291-4305 ◽  
Author(s):  
Jun Zhang ◽  
Zhenbo Wang ◽  
Qing Wang ◽  
Yuan Gao

The flexural performance of polyvinyl alcohol-steel hybrid fiber reinforced engineered cementitious composite with characteristics of low drying shrinkage special focus on impacts of steel fiber content and matrix strength has been investigated in both experimental and theoretical aspects in this paper. Four matrix types with water to binder ratio of 0.25, 0.35, 0.45, and 0.55 and three additional steel fiber contents in the composite with polyvinyl alcohol fiber content of 1.7% in volume were used in the test program. The experimental results show that cracking and flexural strength of the composites are increased with the addition of steel fiber. This enhancement becomes more and more pronounced with decreasing of water to binder ratio of the composites. Meanwhile, fracture mechanics-based flexural model is used to simulate the flexure performance of the polyvinyl alcohol -steel hybrid fiber reinforced engineered cementitious composite with characteristics of low drying shrinkage. The model results show that a double peak load is expected of the composites under bending load. The first peak is controlled by the fracture toughness of matrix or cracking strength of matrix, and the second peak is governed by the fiber bridging. The effect of addition of steel fiber in engineered cementitious composite with characteristics of low drying shrinkage on the first peak is unapparent. The impact of steel fiber on the second peak is significant. This enhancement of additional steel fiber gradually decreases with the decrease of water to binder ratio of the matrix, which coincides well with the experimental findings. The test results are compared to the model and reasonable agreement is found.


2020 ◽  
Vol 54 (26) ◽  
pp. 3949-3965 ◽  
Author(s):  
Xuan Zheng ◽  
Jun Zhang ◽  
Zhenbo Wang

In the present paper, a modified micromechanics based model that describes the crack bridging stress in randomly oriented discontinuous fiber reinforced engineered cementitious composite is developed. In the model, effect of multiple matrix cracking on fiber embedded length, which in turn influencing fiber bridging in the composite, is taken into consideration. First, crack spacing of high strength-low shrinkage engineered cementitious composite was experimentally determined by photographing the specimen surface at some given loading points during uniaxial tensile test. The diagram of average cracking spacing and loading time of each composite is obtained based on above data. Then, fiber bridging model is modified by introducing a revised fiber embedment length as a function of crack spacing. The model is verified with uniaxial tensile test on both tensile strength and crack opening. Good agreement between model and test results is obtained. The modified model can be used in design and prediction of tensile properties of fiber reinforced cementitious composites with characteristics of multiple matrix cracking.


2019 ◽  
Vol 53 (28-30) ◽  
pp. 4285-4304 ◽  
Author(s):  
Alaa Mohammedameen ◽  
Abdulkadir Çevik ◽  
Radhwan Alzeebaree ◽  
Anıl Niş ◽  
Mehmet Eren Gülşan

Conventional concrete suffers from brittle failures under mechanical behaviour, and lack of ductility results in the loss of human life and property in earthquake zones. Therefore, the degree of ductility becomes significant in seismic regions. This paper investigates the influence of poly-vinyl alcohol fibers, basalt fiber-reinforced polymer (BFRP) and carbon fiber-reinforced polymer (CFRP) fabrics on the ductility and mechanical performance of low (LCFA) and high (HCFA) calcium fly ash-based engineered cementitious composite concrete. The study also focuses on the mechanical behaviour of the CFRP and BFRP materials using different matrix types exposed to 3.5% seawater environment. Cyclic loading and scanning electron microscopy observations were also performed to see the effect of chloride attack on mechanical performance and ductility of the specimens. In addition, utilization of CFRP and BFRP fabrics as a retrofit material is also evaluated. Results indicated that the degree of ductility and mechanical performance were found to be superior for the CFRP-engineered cementitious composite hybrid specimens under ambient environment, while LCFA-CFRP hybrid specimens showed better performance under seawater environment. The effect of matrix type was also found significant when engineered cementitious composite is used together with fiber-reinforced polymer materials. In addition, both fiber-reinforced polymer materials can be used as a retrofit material under seawater environment.


2019 ◽  
Vol 9 (24) ◽  
pp. 5275
Author(s):  
Liqiang Yin ◽  
Shuguang Liu ◽  
Changwang Yan ◽  
Ju Zhang ◽  
Xiaoxiao Wang

The concrete in the transition strips of expansion joints can become damaged prematurely during the service period. Polyvinyl alcohol (PVA) fiber-reinforced engineered cementitious composite (ECC) is a kind of high ductility concrete material, and its ultimate uniaxial tensile strain is more than 3%. It can be used to improve the damage status of expansion joints. Based on previous research results, ECCs were used in the pilot project of bridge expansion joints. Under this engineering background, the shear load-displacement curves of ECC expansion joints were studied through 27 groups of compression-shear tests of ECC/steel composite structures. The shear failure characteristics of ECC expansion joints were analyzed by the digital image correlation method. A shear load-displacement curve model of the composite structures was proposed based on the equivalent strain assumption and Weibull distribution theory. The results show that the failure mode of the composite structure specimens was ECC shear cracking. Stress and strain field nephograms were used to explain the failure characteristics of the composite structure specimens. The calculated curves of the shear load-displacement model of the composite structures were in good agreement with the experimental curves. The work is of great importance to the shear design of ECC expansion joints and their further engineering applications.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3796
Author(s):  
Qiang Du ◽  
Changlu Cai ◽  
Jing Lv ◽  
Jiao Wu ◽  
Ting Pan ◽  
...  

This study investigated fundamental mechanical properties of a basalt fiber reinforced engineered cementitious composite (BF-ECC) with different volume fractions of basalt fiber (BF), water–binder ratio (W/B) and fly ash (FA) content. The compressive strength, splitting tensile strength, flexural strength and static modulus of BF-ECC were studied at 3, 28 and 56 days, respectively, to explore their development along the ages. Furthermore, the scanning electron microscopy (SEM) analysis was conducted to evaluate the microstructure of BF-ECC. Experiment results demonstrated that bond quality between the BF and the matrix is good, which leads to a significant increase in the flexural strength and splitting tensile strength. The pozzolanic effect of FA obviously improved the splitting tensile and flexural strength of BF-ECC after 56 days of curing, and the appropriate content of the FA content in the BF-ECC ranges from 50% to 60%.


2012 ◽  
Vol 450-451 ◽  
pp. 433-438
Author(s):  
Phillip Hermes ◽  
Yi Xia Zhang ◽  
Khin Soe ◽  
Joel Bell

A new hybrid-fiber Engineered Cementitious Composite (ECC) containing 1.25% steel (SE) fibers and 0.75% Polyvinyl Alcohol (PVA) fibers is proposed, and material properties of the new ECC mix are tested in this paper. The compressive strength, modulus of elasticity, modulus of rupture and tensile properties under various strain rates of the new hybrid-ECC mix are investigated experimentally. The tested results are compared with those for a normal concrete mix, as well as those for other mono-fiber and hybrid-fiber ECCs reported in other literatures.


Sign in / Sign up

Export Citation Format

Share Document