Microleakage of Accelerated Mineral Trioxide Aggregate and Portland Cement in an In Vitro Apexification Model

2008 ◽  
Vol 34 (1) ◽  
pp. 56-58 ◽  
Author(s):  
Seong-Tae Hong ◽  
Kwang-Shik Bae ◽  
Seung-Ho Baek ◽  
Kee-Yeon Kum ◽  
WooCheol Lee
2006 ◽  
Vol 20 (4) ◽  
pp. 303-306 ◽  
Author(s):  
Daniela Cristina Miyagak ◽  
Elaine Manso Oliveira Franco de Carvalho ◽  
Carlos Roberto Colombo Robazza ◽  
Jorge Kleber Chavasco ◽  
Gustavo Labegalline Levorato

The purpose of this study is to evaluate the antimicrobial activity of the endodontic sealers: N-Rickert, Sealapex, AH Plus, Mineral Trioxide Aggregate (MTA) and portland cement. The Agar diffusion method was used in plates previously inoculated with the following microorganisms: C. albicans, S. aureus, E. faecalis, E. coli. The diameters of microbial inhibition zones were measured after 24 hours of incubation in kiln at 37°C. According to the methodology used, it was possible to conclude that only the sealers AH Plus and N-Rickert presented antimicrobial activity against C. albicans, S. aureus, and E. coli; no antimicrobial activity in MTA, Sealapex and portland cement was observed. N-Rickert presented the largest inhibition zones varying from 8 to 18 mm, and the microorganism E. faecalis was resistant against all sealers tested.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Shahriar Shahi ◽  
Elaheh Fakhri ◽  
Hamidreza Yavari ◽  
Solmaz Maleki Dizaj ◽  
Sara Salatin ◽  
...  

Portland cement (PC) is used in challenging endodontic situations in which preserving the health and functionality of pulp tissue is of considerable importance. PC forms the main component of mineral trioxide aggregate (MTA) and demonstrates similar desirable properties as an orthograde or retrograde filling material. PC is able to protect pulp against bacterial infiltration, induce reparative dentinogenesis, and form dentin bridge during the pulp healing process. The biocompatibility, bioactivity, and physical properties of PC have been investigated in vitro and in animal models, as well as in some limited clinical trials. This paper reviews Portland cement’s structure and its characteristics and reaction in various environments and eventually accentuates the present concerns with this material. This bioactive endodontic cement has shown promising success rates compared to MTA; however, considerable modifications are required in order to improve its characteristics and expand its application scope as a root repair material. Hence, the extensive chemical modifications incorporated into PC composition to facilitate preparation and handling procedures are discussed. It is still important to further address the applicability, reliability, and cost-effectiveness of PC before transferring into day-to-day clinical practice.


2013 ◽  
Vol 24 (2) ◽  
pp. 111-116 ◽  
Author(s):  
Patrícia Yoshino ◽  
Celso Kenji Nishiyama ◽  
Karin Cristina da Silva Modena ◽  
Carlos Ferreira Santos ◽  
Carla Renata Sipert

The aim of this study was to compare the in vitro cytotoxicity of white mineral trioxide aggregate (MTA), MTA Fillapex® and Portland cement (PC) on human cultured periodontal ligament fibroblasts. Periodontal ligament fibroblast culture was established and the cells were used for cytotoxic tests after the fourth passage. Cell density was set at 1.25 X10 4 cells/well in 96-well plates. Endodontic material extracts were prepared by placing sealer/cement specimens (5X3mm) in 1mL of culture medium for 72 h. The extracts were then serially two-fold diluted and inserted into the cell-seeded wells for 24, 48 and 72 h. MTT assay was employed for analysis of cell viability. Cell supernatants were tested for nitric oxide using the Griess reagent system. MTA presented cytotoxic effect in undiluted extracts at 24 and 72 h. MTA Fillapex® presented the highest cytotoxic levels with important cell viability reduction for pure extracts and at ½ and ¼ dilutions. In this study, PC did not induce alterations in fibroblast viability. Nitric oxide was detected in extract-treated cell supernatants and also in the extracts only, suggesting presence of nitrite in the soluble content of the tested materials. In the present study, MTA Fillapex displayed the highest cytotoxic effect on periodontal ligament fibroblasts followed by white MTA and PC.


2007 ◽  
Vol 15 (3) ◽  
pp. 181-185 ◽  
Author(s):  
Patrícia Zanatta Aranha Coneglian ◽  
Fernando Accorsi Orosco ◽  
Clóvis Monteiro Bramante ◽  
Ivaldo Gomes de Moraes ◽  
Roberto Brandão Garcia ◽  
...  

Author(s):  
Shagun Bhatia ◽  
Ankush Jain ◽  
Kanu Jain ◽  
Atul Kumar Bishnoi

Abstract Introduction Insufficient seal of apex is a significant reason for an endodontist’s disappointment. The materials for root-end filling utilized ought to forestall departure of possible pollutants into periapical areas. The objective of this analysis was to compare the fixing capacity of three materials: white mineral trioxide aggregate (MTA), white Portland cement (PC), and Biodentine. This was analyzed through a test checking for dye leakage. Materials and Methods Thirty human teeth having one root were subjected to instrumentation followed by gutta-percha obturation. An apical pit was readied for the material. The tooth samples were then grouped into three trial bunches: Group I, Biodentine; Group II, white MTA; and Group III, white PC. Root-end pits in the test bunches were loaded-up with the exploratory materials. The tooth samples were kept in India ink for a duration of 72 hours. The degree of color infiltration was estimated with the help of a stereomicroscope at 16× amplification. Color entrance was observed in the whole root in vitro. Results The sequelae of this inspection found that Biodentine shows least leakage compared to MTA and PC. Conclusion Biodentine shows less microleakage compared to MTA and PC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mehdi Dastorani ◽  
Behnam Malekpour ◽  
Mohsen AminSobhani ◽  
Mohammadsadegh Alemrajabi ◽  
Arezoo Mahdian ◽  
...  

Abstract Background Bacterial microleakage is an important cause of apical periodontitis and endodontic treatment failure. This study aimed to assess the bacterial microleakage of nano-mineral trioxide aggregate (nano-MTA) as a sealer, Endoseal MTA, and GuttaFlow Bioseal sealers in atmospheric pressure, and simulated underwater diving and aviation conditions. Methods In this in vitro, experimental study, 180 extracted single-rooted teeth were cleaned and shaped, and were then randomly divided into three groups for single-cone obturation using Endoseal MTA, GuttaFlow Bioseal, or nano-MTA as a sealer. Each group was then randomly divided into three subgroups, and subjected to ambient atmospheric pressure, 2 atm pressure (to simulate underwater diving), and 0.5 atm pressure (to simulate aviation) using a custom-made pressure chamber. The teeth then underwent microbial leakage test using Streptococcus mutans (S. mutans), and the percentage of samples showing microleakage was recorded for up to 1 month, and analyzed using the Chi-square test. Results The three sealer groups were significantly different regarding bacterial microleakage (P < 0.05). The nano-MTA group showed significantly higher microleakage after 15 days than the other two groups (P = 0.006). The effect of pressure on bacterial microleakage was not significant in any sealer group (P > 0.05). Conclusion Within the limitations of this in vitro study, it may be concluded that single-cone obturation technique using nano-MTA as a sealer results in lower resistance to bacterial microleakage compared with the use of GuttaFlow Bioseal, and Endoseal MTA. Pressure changes in simulated underwater diving and aviation conditions had no significant effect on bacterial microleakage. Trial Registration Number This is not a human subject research.


2008 ◽  
Vol 34 (9) ◽  
pp. 1057-1060 ◽  
Author(s):  
Yoshiyuki Yasuda ◽  
Masafumi Ogawa ◽  
Toshiya Arakawa ◽  
Tomoko Kadowaki ◽  
Takashi Saito

2006 ◽  
Vol 32 (11) ◽  
pp. 1053-1056 ◽  
Author(s):  
Khalid Al-Hezaimi ◽  
Thakib A. Al-Shalan ◽  
Jafar Naghshbandi ◽  
Samuel Oglesby ◽  
James H.S. Simon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document