Investigation of reduction process and related impurities in ezetimibe

2015 ◽  
Vol 107 ◽  
pp. 355-363 ◽  
Author(s):  
Dengfeng Zhang ◽  
Jiangtao Su
2017 ◽  
Vol 13 (2) ◽  
pp. 4671-4677 ◽  
Author(s):  
A. M. Abdelghany ◽  
A.H. Oraby ◽  
Awatif A Hindi ◽  
Doaa M El-Nagar ◽  
Fathia S Alhakami

Bimetallic nanoparticles of silver (Ag) and gold (Au) were synthesized at room temperature using Curcumin. Reduction process of silver and gold ions with different molar ratios leads to production of different nanostructures including alloys and core-shells. Produced nanoparticles were characterized simultaneously with FTIR, UV/vis. spectroscopy, transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDAX). UV/vis. optical absorption spectra of as synthesized nanoparticles reveals presence of surface palsmon resonance (SPR) of both silver at (425 nm) and gold at (540 nm) with small shift and broadness of gold band after mixing with resucing and capping agent in natural extract which suggest presence of bimetallic nano structure (Au/Ag). FTIR and EDAX data approve the presence of bimetallic nano structure combined with curcumin extract. TEM micrographs shows that silver and gold can be synthesized separately in the form of nano particles using curcumin extract. Synthesis of gold nano particles in presence of silver effectively enhance and control formation of bi-metallic structure.


2019 ◽  
Author(s):  
Merlin Kleoff ◽  
Johannes Schwan ◽  
Lisa Boeser ◽  
Bence Hartmayer ◽  
Mathias Christmann ◽  
...  

A scalable access to functionalized 1,1’- and 1,2-ferrocenyl azides has been realized in flow. By halogen‒lithium exchange of ferrocenyl halides and subsequent reaction with tosyl azide, a variety of functionalized ferrocenyl azides was obtained in high yields. To allow a scalable preparation of these potentially explosive compounds, an efficient flow protocol was developed accelerating the reaction time to minutes and circumventing accumulation of potentially hazardous intermediates. Switching from homogeneous to triphasic flow amidst process was key for handling a heterogeneous reaction mixture formed after a heated reactor section. The corresponding and synthetically versatile ferrocenyl amines were then prepared by a reliable reduction process.


2019 ◽  
Author(s):  
Chem Int

Iron nanoparticles have gained tremendous attention due to their application in magnetic storage media, ferrofluids, biosensors, catalysts, separation processes, environmental remediation and antibacterial activity. In the present paper, iron nanoparticles were synthesized using aqueous flower extract of Piliostigma thonningii, a natural nontoxic herbal infusion. Iron nanoparticles were generated by reaction of ferrous chloride solution with the flower extract. The reductants present in the flower extract acted as reducing and stabilizing agents. UV-vis analysis of the iron nanoparticles showed continuous absorption in the visible range suggesting the iron nanoparticles were amorphous. This was confirmed by X-ray diffraction (XRD) analysis which did not have distinct diffraction peaks. Scanning electron microscopy (SEM) analysis revealed that the synthesized iron nanoparticles were aggregated as irregular clusters with rough surfaces. FT-IR studies showed the functional groups that participated in the bio-reduction process to include a C-H stretch (due to alkane CH3, CH2 or CH), C=O stretch (due to aldehydes), O-H bend (due to tert-alcohol or phenol), C-O stretch (due to aldehydes or phenols) and C-O stretch (due to alcohols) corresponding to absorptions at 2929.00, 1721.53, 1405.19, 1266.31 and 1030.02 cm-1 respectively. The iron nanoparticles showed significant antibacterial activity against Escharichia coli and Staphylococcus aureus suggesting potential antibacterial application.


2014 ◽  
Vol 10 (2) ◽  
pp. 231-234 ◽  
Author(s):  
Gisela Alvarez ◽  
María Foglia ◽  
Daniela Camporotondi ◽  
S. Giorgieri ◽  
Martín Desimone ◽  
...  

2020 ◽  
Vol 16 ◽  
Author(s):  
Yun-Yan Xia ◽  
Qiao-Gen Zou ◽  
Yu-Fei Yang ◽  
Qian Sun ◽  
Cheng-Qun Han

Background: High-performance liquid chromatography (HPLC) method has been used to detect related impurities of perampanel. However, the detection of impurities is incomplete, and the limits of quantification and detection are high. A sensitive, reliable method is in badly to be developed and applied for impurity detection of perampanel bulk drug. Objective: Methodologies utilising HPLC and gas chromatography (GC) were established and validated for quantitative determination of perampanel and its related impurities (a total of 10 impurities including 2 genotoxic impurities). Methods: The separation was achieved on a Dikma Diamonsil C18 column (250 mm × 4.6 mm, 5 μm) with the mobile phase of 0.01 mol/L potassium dihydrogen phosphate solution (A) and acetonitrile (B) in gradient elution mode. The compound 2-bromopropane was determined on an Agilent DB-624 column (0.32 mm × 30 m, 1.8 μm) by electron capture detector (μ-ECD) with split injection ratio of 1:5 and proper gradient temperature program. Result: Both HPLC and GC methods were established and validated to be sensitive, accurate and robust according to International Council for Harmonization (ICH) guidelines. The methods developed were linear in the selected concentration range (R 2≥0.9944). The average recovery of all impurities was between 92.6% and 103.3%. The possible production mechanism of impurities during the synthesis and degradation processes of perampanel bulk drug was also discussed. Five impurities were analyzed by liquid chromatography–mass spectrometry (LC-MS). Moreover, two of them were simultaneously characterized by LC-MS, IR and NMR. Conclusion: The HPLC and GC methods were developed and optimized, which could be applied for quantitative detection of the impurities, and further stability study of perampanel.


Sign in / Sign up

Export Citation Format

Share Document