scholarly journals Characterization of Adeno-Associated Virus Capsid Proteins Using Hydrophilic Interaction Chromatography Coupled with Mass Spectrometry

2020 ◽  
Vol 189 ◽  
pp. 113481
Author(s):  
Anita P. Liu ◽  
Shailin K. Patel ◽  
Tao Xing ◽  
Yuetian Yan ◽  
Shunhai Wang ◽  
...  
2011 ◽  
Vol 417 (1) ◽  
pp. 80-88 ◽  
Author(s):  
Martin Gilar ◽  
Ying-Qing Yu ◽  
Joomi Ahn ◽  
Hongwei Xie ◽  
Huanhuan Han ◽  
...  

2022 ◽  
Author(s):  
Jesse Wilson ◽  
Aivett Bilbao ◽  
Juan Wang ◽  
Yen-Chen Liao ◽  
Dusan Velickovic ◽  
...  

SARS-CoV-2 cellular infection is mediated by the heavily glycosylated spike protein. Recombinant versions of the spike protein and the receptor binding domain (RBD) are necessary for seropositivity assays and can potentially serve as vaccines against viral infection. RBD plays key roles in the spike protein’s structure and function, and thus comprehensive characterization of recombinant RBD is critically important for biopharmaceutical applications. Liquid-chromatography coupled to mass spectrometry (LCMS) has been widely used to characterize post-translational modifications in proteins including glycosylation. Most studies of RBDs were performed at the proteolytic peptide (bottom-up proteomics) or released glycan level because of the technical challenges in resolving highly heterogenous glycans at the intact protein level. Herein, we evaluated several online separation techniques: 1. C2 reverse-phase liquid chromatography (RPLC), 2. capillary zone electrophoresis (CZE), and 3. acrylamide-based monolithic hydrophilic interaction chromatography (HILIC) to separate intact recombinant RBDs with varying combinations of glycosylations (glycoforms) for top-down MS. Within the conditions we explored, the HILIC method was superior to RPLC and CZE at separating RBD glycoforms, which differ significantly in neutral glycan groups. In addition, our top-down analysis readily captured unexpected modifications (e.g., cysteinylation, N-terminal sequence variation) and low abundance, heavily glycosylated proteoforms that may be missed by using glycopeptide data alone. The HILIC top-down MS platform holds great potential in resolving heterogenous glycoproteins for facile comparison of biosimilars in quality control applications.


2021 ◽  
Author(s):  
Felipe Guapo ◽  
Lisa Strasser ◽  
Silvia Millan-Martin ◽  
Ian Anderson ◽  
Jonathan Bones

Adeno-associated virus (AAV) represent a widely used delivery mechanism for gene therapy treatments currently being developed. The size and complexity of these molecules requires the development of sensitive analytical methods for detailed product characterization. Among the quality attributes that need to be monitored, characterization of the AAV capsid protein amino acid sequences and any associated post translational modifications (PTM) present should be performed. As commonly used for recombinant protein analysis, LC-MS based peptide mapping can provide sequence coverage and PTM information to improve product understanding and the development and deployment of the associated manufacturing processes. In the current study, we report a fast and efficient method to digest AAV5 capsid proteins in only 30 minutes prior to peptide mapping analysis. The performance of different proteases in digesting AAV5 was compared and the benefits of using nanoflow liquid chromatography for separation prior to high resolution mass spectrometry to obtain 100% sequence coverage are highlighted. Characterization and quantitation of PTMs on AAV5 capsid proteins when using pepsin as a single protease is reported, thereby demonstrating the potential of this method to aid with complete characterization of AAV serotypes in gene therapy development laboratories.


Sign in / Sign up

Export Citation Format

Share Document