scholarly journals Application of human induced pluripotent stem cell-derived cardiomyocytes sheets with microelectrode array system to estimate antiarrhythmic properties of multi-ion channel blockers

2018 ◽  
Vol 137 (4) ◽  
pp. 372-378 ◽  
Author(s):  
Hiroko Izumi-Nakaseko ◽  
Mihoko Hagiwara-Nagasawa ◽  
Atsuhiko T. Naito ◽  
Ai Goto ◽  
Koki Chiba ◽  
...  
2012 ◽  
Vol 17 (9) ◽  
pp. 1192-1203 ◽  
Author(s):  
Tadahiro Shinozawa ◽  
Kenichi Imahashi ◽  
Hiroshi Sawada ◽  
Hatsue Furukawa ◽  
Kenji Takami

Human-induced pluripotent stem cell–derived cardiomyocytes (hiPS-CMs) at different stages (approximate days 30, 60, and 90) were used to determine the appropriate stage for functional and morphological assessment of drug effects in vitro. The hiPS-CMs had spontaneous beating activity, and β-adrenergic function was comparable in all stages of differentiation. Microelectrode array analyses using ion channel blockers indicated that the electrophysiological properties of these ion channels were comparable at all differentiation stages. Ultrastructural analysis using electron microscopy showed that myofibrillar structures at days 60 and 90 were similarly distributed and more mature than that at day 30. Analysis of motion vectors in contracting cells showed that the velocity of contraction was the highest at day 90 and was the most mature among the three stages. Gene expression analysis demonstrated that expression of some genes related to myofilament and sarcoplasmic reticulum increased with maturation of morphological and contractile properties. In conclusion, day 30 cardiomyocytes are useful for basic screening such as the assessment of electrophysiological properties, and days 60 and 90 are the appropriate differentiation stage for morphological assays. For the assay of contractile function associated with subcellular components such as sarcoplasmic reticulum, day 90 cardiomyocytes are the most suitable.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Zhihan Zhao ◽  
Huan Lan ◽  
Ibrahim El-Battrawy ◽  
Xin Li ◽  
Fanis Buljubasic ◽  
...  

Background. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are providing new possibilities for the biological study, cell therapies, and drug discovery. However, the ion channel expression and functions as well as regulations in hiPSC-CMs still need to be fully characterized. Methods. Cardiomyocytes were derived from hiPS cells that were generated from two healthy donors. qPCR and patch clamp techniques were used for the study. Results. In addition to the reported ion channels, INa, ICa-L, ICa-T, If, INCX, IK1, Ito, IKr, IKs IKATP, IK-pH, ISK1–3, and ISK4, we detected both the expression and currents of ACh-activated (KACh) and Na+-activated (KNa) K+, volume-regulated and calcium-activated (Cl-Ca) Cl−, and TRPV channels. All the detected ion currents except IK1, IKACh, ISK, IKNa, and TRPV1 currents contribute to AP duration. Isoprenaline increased ICa-L, If, and IKs but reduced INa and INCX, without an effect on Ito, IK1, ISK1–3, IKATP, IKr, ISK4, IKNa, ICl-Ca, and ITRPV1. Carbachol alone showed no effect on the tested ion channel currents. Conclusion. Our data demonstrate that most ion channels, which are present in healthy or diseased cardiomyocytes, exist in hiPSC-CMs. Some of them contribute to action potential performance and are regulated by adrenergic stimulation.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Junjun Li ◽  
Itsunari Minami ◽  
Leqian Yu ◽  
Kiyotaka Tsuji ◽  
Minako Nakajima ◽  
...  

Human induced pluripotent stem cell (hiPSC) derived cardiomyocytes (CMs) hold high potential for use in drug assessment and myocardial regeneration. To create tissue-like constructs of CMs for extracellular monitoring, we placed aligned fibers (AFs) on the surface of a microelectrode array and then seeded hiPSC-CMs for subsequent monitoring for 14 days. As expected, the CMs organized into anisotropic and matured tissue and the extracellular recordings showed reduced premature beating higher signal amplitude and a higher probability of T-wave detection as compared to the culture without fibers. The CMs on the aligned fibers samples also exhibited anisotropic propagation of the field potential. These results therefore suggest that the hiPSC-CMs cultured on AFs can be used more reliably for cell based assays.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Francis Grafton ◽  
Jaclyn Ho ◽  
Sara Ranjbarvaziri ◽  
Farshad Farshidfar ◽  
Anastasiia Budan ◽  
...  

Drug-induced cardiotoxicity and hepatotoxicity are major causes of drug attrition. To decrease late-stage drug attrition, pharmaceutical and biotechnology industries need to establish biologically relevant models that use phenotypic screening to detect drug-induced toxicity in vitro. In this study, we sought to rapidly detect patterns of cardiotoxicity using high-content image analysis with deep learning and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We screened a library of 1280 bioactive compounds and identified those with potential cardiotoxic liabilities in iPSC-CMs using a single-parameter score based on deep learning. Compounds demonstrating cardiotoxicity in iPSC-CMs included DNA intercalators, ion channel blockers, epidermal growth factor receptor, cyclin-dependent kinase, and multi-kinase inhibitors. We also screened a diverse library of molecules with unknown targets and identified chemical frameworks that show cardiotoxic signal in iPSC-CMs. By using this screening approach during target discovery and lead optimization, we can de-risk early-stage drug discovery. We show that the broad applicability of combining deep learning with iPSC technology is an effective way to interrogate cellular phenotypes and identify drugs that may protect against diseased phenotypes and deleterious mutations.


2019 ◽  
Vol 125 (2) ◽  
pp. 212-222 ◽  
Author(s):  
Chi Keung Lam ◽  
Lei Tian ◽  
Nadjet Belbachir ◽  
Alexa Wnorowski ◽  
Rajani Shrestha ◽  
...  

Rationale: Calcium channel blockers (CCBs) are an important class of drugs in managing cardiovascular diseases. Patients usually rely on these medications for the remainder of their lives after diagnosis. Although the acute pharmacological actions of CCBs in the hearts are well-defined, little is known about the drug-specific effects on human cardiomyocyte transcriptomes and physiological alterations after long-term exposure. Objective: This study aimed to simulate chronic CCB treatment and to examine both the functional and transcriptomic changes in human cardiomyocytes. Methods and Results: We differentiated cardiomyocytes and generated engineered heart tissues from 3 human induced pluripotent stem cell lines and exposed them to 4 different CCBs—nifedipine, amlodipine, diltiazem, and verapamil—at their physiological serum concentrations for 2 weeks. Without inducing cell death and damage to myofilament structure, CCBs elicited line-specific inhibition on calcium kinetics and contractility. While all 4 CCBs exerted similar inhibition on calcium kinetics, verapamil applied the strongest inhibition on cardiomyocyte contractile function. By profiling cardiomyocyte transcriptome after CCB treatment, we identified little overlap in their transcriptome signatures. Verapamil is the only inhibitor that reduced the expression of contraction-related genes, such as MYH (myosin heavy chain) and troponin I, consistent with its depressive effects on contractile function. The reduction of these contraction-related genes may also explain the responsiveness of patients with hypertrophic cardiomyopathy to verapamil in managing left ventricular outflow tract obstruction. Conclusions: This is the first study to identify the transcriptome signatures of different CCBs in human cardiomyocytes. The distinct gene expression patterns suggest that although the 4 inhibitors act on the same target, they may have distinct effects on normal cardiac cell physiology.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Sherri M Biendarra-tiegs ◽  
Sergey Yechikov ◽  
Laura Houshmand ◽  
R. E Gonzalez ◽  
Zhi Hong Lu ◽  
...  

Atrial fibrillation (AF) poses a notable healthcare burden due to a high incidence in the increasing population over age 65 and limitations of current treatment approaches. One challenge to effectively treat AF is patient-to-patient heterogeneity in the underlying mechanisms of disease. Therefore, a better understanding of AF pathogenesis and more personalized approaches to therapy could reduce risk of side effects and improve therapeutic efficacy. Genome wide association studies (GWAS) have revealed several candidate genes for AF including TBX5 , which encodes for a transcription factor involved in heart development. While work in animal models suggests that loss of TBX5 promotes atrial arrythmias, experimental evidence in human cells is lacking. We created an in vitro model of human atrial conduction using day 60+ induced pluripotent stem cell-derived atrial-like cardiomyocytes (iPSC-aCMs) differentiated from three established healthy iPSC lines. Over 90% atrial-like purity (out of 350+ alpha-actinin positive cardiomyocytes) could be achieved based on MLC2v-/MLC2a+ immunofluorescent staining. TBX5 knockdown via esiRNA resulted in downregulation of genes related to conduction velocity ( GJA5 and SCN5A ), consistent with an enhanced risk of AF. Single cell optical electrophysiology demonstrated slightly reduced action potential amplitude and upstroke velocity for TBX5 knockdown cells versus GFP esiRNA controls, suggesting a functional effect of SCN5A downregulation. Additionally, microelectrode array studies have revealed a trend towards slowed conduction velocity with TBX5 knockdown compared to GFP esiRNA controls (13.1±3.0 cm/s vs 17.0±3.8 cm/s respectively). By further investigating the functional effects of modulating transcription factors such as TBX5 in iPSC-aCMs, our results provide enhanced insight into the regulation of atrial conduction and identify potential AF-related pathways for therapeutic targeting.


2020 ◽  
Vol 21 (2) ◽  
pp. 657 ◽  
Author(s):  
Marc Pourrier ◽  
David Fedida

There is a need for improved in vitro models of inherited cardiac diseases to better understand basic cellular and molecular mechanisms and advance drug development. Most of these diseases are associated with arrhythmias, as a result of mutations in ion channel or ion channel-modulatory proteins. Thus far, the electrophysiological phenotype of these mutations has been typically studied using transgenic animal models and heterologous expression systems. Although they have played a major role in advancing the understanding of the pathophysiology of arrhythmogenesis, more physiological and predictive preclinical models are necessary to optimize the treatment strategy for individual patients. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have generated much interest as an alternative tool to model arrhythmogenic diseases. They provide a unique opportunity to recapitulate the native-like environment required for mutated proteins to reproduce the human cellular disease phenotype. However, it is also important to recognize the limitations of this technology, specifically their fetal electrophysiological phenotype, which differentiates them from adult human myocytes. In this review, we provide an overview of the major inherited arrhythmogenic cardiac diseases modeled using hiPSC-CMs and for which the cellular disease phenotype has been somewhat characterized.


Sign in / Sign up

Export Citation Format

Share Document