Numerical and experimental evaluation of the relationship between porous electrode structure and effective conductivity of ions and electrons in lithium-ion batteries

2017 ◽  
Vol 342 ◽  
pp. 476-488 ◽  
Author(s):  
Gen Inoue ◽  
Motoaki Kawase
Modelling ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 259-287
Author(s):  
Robert Franke-Lang ◽  
Julia Kowal

The electrification of the powertrain requires enhanced performance of lithium-ion batteries, mainly in terms of energy and power density. They can be improved by optimising the positive electrode, i.e., by changing their size, composition or morphology. Thick electrodes increase the gravimetric energy density but generally have an inefficient performance. This work presents a 2D modelling approach for better understanding the design parameters of a thick LiFePO4 electrode based on the P2D model and discusses it with common literature values. With a superior macrostructure providing a vertical transport channel for lithium ions, a simple approach could be developed to find the best electrode structure in terms of macro- and microstructure for currents up to 4C. The thicker the electrode, the more important are the direct and valid transport paths within the entire porous electrode structure. On a smaller scale, particle size, binder content, porosity and tortuosity were identified as very impactful parameters, and they can all be attributed to the microstructure. Both in modelling and electrode optimisation of lithium-ion batteries, knowledge of the real microstructure is essential as the cross-validation of a cellular and lamellar freeze-casted electrode has shown. A procedure was presented that uses the parametric study when few model parameters are known.


2021 ◽  
Vol 333 ◽  
pp. 17002
Author(s):  
Ryusei Hirate ◽  
Hiroki Mashioka ◽  
Shinichiro Yano ◽  
Yoshifumi Tsuge ◽  
Gen Inoue

In order to increase energy density and enhance safety, all-solid-sate lithium-ion batteries have been developed as a storage battery for electric vehicle (EV). Further performance improvement of all-solid-sate lithium-ion batteries requires optimization of the electrode structure. In this paper, we constructed a phase interface model focusing on the microstructure of the porous electrode, and examined the reaction of the electrode layer structure.


2021 ◽  
Vol 17 ◽  
Author(s):  
Ahmed Alahmed ◽  
Emel Ceyhun Sabır

: The electrodes are the basis for building flexible lithium-ion batteries (FLIBs), and many attempts have been made to develop flexible electrodes with high efficiency in terms of electrical conductivity, chemical and mechanical properties. Most studies showed relatively satisfactory results when testing the electrochemical properties of laboratory-produced electrodes, but most of these electrodes could not meet the expected requirements of flexible electrodes in practical applications. Quantitative production faces many problems that must be overcome, such as the gradual decline in electrochemical performance, deformation of the electrode structure, high production costs, and difficulties in the production process itself. In this research, developments in the production of flexible electrodes, especially those that depend on carbon materials and metal nanoparticles, will be discussed and summarized in this research. The electrochemical performance and stability of the produced flexible electrodes will be compared. The factors contributing to the progress in the production of flexible lithium-ion batteries will also be discussed.


2020 ◽  
Vol 29 ◽  
pp. 254-265 ◽  
Author(s):  
David L. Wood ◽  
Marissa Wood ◽  
Jianlin Li ◽  
Zhijia Du ◽  
Rose E. Ruther ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (64) ◽  
pp. 51483-51488 ◽  
Author(s):  
Sen Gao ◽  
Wei Wei ◽  
Maixia Ma ◽  
Juanjuan Qi ◽  
Jie Yang ◽  
...  

This paper expounds upon the relationship between the electrochemical performance and the degree of c-axis orientation of LiCoO2.


2020 ◽  
Vol 12 (10) ◽  
pp. 1465-1468
Author(s):  
Jin-Ju Bae ◽  
Ji-Woong Shin ◽  
Seong-Jae Kim ◽  
Tae-Whan Hong

Electrodes were fabricated using a perforated aluminum current collector and a standard aluminum foil, and the relationship between the electrochemical performance of the battery and the current collector was investigated. The perforated aluminum foil improved the contact characteristics between the cathode materials particles and the current collector. Also, electrochemical performance indicators such discharge capacity and rate characteristics were improved due to the increased adhesion of the electrode using the perforated current collector.


Sign in / Sign up

Export Citation Format

Share Document