scholarly journals An experimental investigation on the trailing edge cooling of turbine blades

2012 ◽  
Vol 1 (1) ◽  
pp. 36-47 ◽  
Author(s):  
Zifeng Yang ◽  
Hui Hu
Author(s):  
M. Yaras ◽  
S. A. Sjolander

The paper presents detailed measurements of the tip-leakage flow emerging from a planar cascade of turbine blades. Four clearances of from 1.5 to 5.5 percent of the blade chord are considered. Measurements were made at the trailing edge plane, and at two main planes 1.0 and 1.56 axial chord lengths downstream of the cascade. The results give insight into several aspects of the leakage flow including: the size and strength of the leakage vortex in relation to the size of the tip gap and the bound circulation of the blade; and the evolution of the components of vorticity as the vortex diffuses laterally downstream of the blade row. The vortex was found to have largely completed its roll-up into a nearly axisymmetric structure even at the trailing edge of the cascade. As a result, it was found that the vortex could be modelled surprisingly well with a simple model based on the diffusion of a line vortex.


Author(s):  
P. J. Bryanston-Cross ◽  
J. J. Camus

A simple technique has been developed which samples the dynamic image plane information of a schlieren system using a digital correlator. Measurements have been made in the passages and in the wakes of transonic turbine blades in a linear cascade. The wind tunnel runs continuously and has independently variable Reynolds and Mach number. As expected, strongly correlated vortices were found in the wake and trailing edge region at 50 KHz. Although these are strongly coherent we show that there is only limited cross-correlation from wake to wake over a Mach no. range M = 0.5 to 1.25 and variation of Reynolds number from 3 × 105 to 106. The trailing edge fluctuation cross correlations were extended both upstream and downstream and preliminary measurements indicate that this technique can be used to obtain information on wake velocity. The vortex frequency has also been measured over the same Mach number range for two different cascades. The results have been compared with high speed schlieren photographs.


2005 ◽  
Vol 29 (2) ◽  
pp. 89-113 ◽  
Author(s):  
Niels Troldborg

A comprehensive computational study, in both steady and unsteady flow conditions, has been carried out to investigate the aerodynamic characteristics of the Risø-B1-18 airfoil equipped with variable trailing edge geometry as produced by a hinged flap. The function of such flaps should be to decrease fatigue-inducing oscillations on the blades. The computations were conducted using a 2D incompressible RANS solver with a k-w turbulence model under the assumption of a fully developed turbulent flow. The investigations were conducted at a Reynolds number of Re = 1.6 · 106. Calculations conducted on the baseline airfoil showed excellent agreement with measurements on the same airfoil with the same specified conditions. Furthermore, a more widespread comparison with an advanced potential theory code is presented. The influence of various key parameters, such as flap shape, flap size and oscillating frequencies, was investigated so that an optimum design can be suggested for application with wind turbine blades. It is concluded that a moderately curved flap with flap chord to airfoil curve ratio between 0.05 and 0.10 would be an optimum choice.


AIAA Journal ◽  
1985 ◽  
Vol 23 (5) ◽  
pp. 768-775 ◽  
Author(s):  
Robert W. Paterson ◽  
Harris D. Weingold

Author(s):  
K. J. Standish ◽  
C. P. van Dam

The adoption of blunt trailing edge airfoils for the inner regions of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide increased structural volume, but have also been found to improve the lift characteristics of airfoils and therefore allow for section shapes with a greater maximum thickness. Limited experimental data makes it difficult for wind turbine designers to consider and conduct tradeoff studies using these section shapes. This lack of experimental data precipitated the present analysis of blunt trailing edge airfoils using computational fluid dynamics. Several computational techniques are applied including a viscous/inviscid interaction method and several Reynolds-averaged Navier-Stokes methods.


2018 ◽  
Vol 141 (6) ◽  
Author(s):  
V. Tremblay-Dionne ◽  
T. Lee

The effect of trailing-edge flap (TEF) deflection on the aerodynamic properties and flowfield of a symmetric airfoil over a wavy ground was investigated experimentally. This Technical Brief is a continuation of Lee and Tremblay-Dionne (2018, “Experimental Investigation of the Aerodynamics and Flowfield of a NACA 0015 Airfoil Over a Wavy Ground,” ASME J. Fluids Eng., 140(7), p. 071202) in which an unflapped airfoil was employed. Regardless of the flap deflection, the cyclic variation in the sectional lift Cl and pitching moment Cm coefficients over the wavy ground always persists. The Cm also has an opposite trend to Cl. The flap deflection, however, produces an increased maximum and minimum Cl and Cm with a reduced fluctuation compared to their unflapped counterparts. The Cd increase outperforms the Cl increase, leading to a lowered Cl/Cd of the flapped airfoil.


Sign in / Sign up

Export Citation Format

Share Document