Calmodulin binds to the STAS domain of SLC26A5 prestin with a calcium-dependent, one-lobe, binding mode

2021 ◽  
pp. 107714
Author(s):  
Elisa Costanzi ◽  
Alice Coletti ◽  
Barbara Zambelli ◽  
Antonio Macchiarulo ◽  
Massimo Bellanda ◽  
...  
2018 ◽  
Author(s):  
Debadrita Modak ◽  
Marcos Sotomayor

ABSTRACTCadherins form a large family of calcium-dependent adhesive proteins involved in morphogenesis, cell differentiation, and neuronal connectivity. Non-clustered δ1 protocadherins form a cadherin subgroup of proteins with seven extracellular cadherin (EC) repeats and cytoplasmic domains distinct from those of classical cadherins. The non-clustered δ1 protocadherins mediate homophilic adhesion and have been implicated in various diseases including asthma, autism, and cancer. Here we present X-ray crystal structures of Protocadherin-1 (PCDH1), a δ1-protocadherin member essential for New World hantavirus infection that is typically expressed in the brain, airway epithelium, skin keratinocytes, and lungs. The structures suggest a binding mode that involves antiparallel overlap of repeats EC1 to EC4. Mutagenesis combined with binding assays and biochemical experiments validated this mode of adhesion. Overall, these results reveal the molecular mechanism underlying adhesiveness of PCDH1 and δ1-protocadherins, also shedding light on PCDH1’s role in maintaining airway epithelial integrity, the loss of which causes respiratory diseases.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Debadrita Modak ◽  
Marcos Sotomayor

Abstract Cadherins form a large family of calcium-dependent adhesive proteins involved in morphogenesis, cell differentiation, and neuronal connectivity. Non-clustered δ1 protocadherins form a cadherin subgroup of proteins with seven extracellular cadherin (EC) repeats and cytoplasmic domains distinct from those of classical cadherins. Non-clustered δ1 protocadherins mediate homophilic adhesion and have been implicated in various diseases including asthma, autism, and cancer. Here we present X-ray crystal structures of human Protocadherin-1 (PCDH1), a δ1-protocadherin member essential for New World Hantavirus infection that is typically expressed in the brain, airway epithelium, skin keratinocytes, and lungs. The structures suggest a binding mode that involves antiparallel overlap of repeats EC1 to EC4. Mutagenesis combined with binding assays and biochemical experiments validated this mode of adhesion. Overall, these results reveal the molecular mechanism underlying adhesiveness of PCDH1 and δ1-protocadherins, also shedding light on PCDH1’s role in maintaining airway epithelial integrity, the loss of which causes respiratory diseases.


2002 ◽  
Vol 69 ◽  
pp. 59-72 ◽  
Author(s):  
Kurt Drickamer ◽  
Andrew J. Fadden

Many biological effects of complex carbohydrates are mediated by lectins that contain discrete carbohydrate-recognition domains. At least seven structurally distinct families of carbohydrate-recognition domains are found in lectins that are involved in intracellular trafficking, cell adhesion, cell–cell signalling, glycoprotein turnover and innate immunity. Genome-wide analysis of potential carbohydrate-binding domains is now possible. Two classes of intracellular lectins involved in glycoprotein trafficking are present in yeast, model invertebrates and vertebrates, and two other classes are present in vertebrates only. At the cell surface, calcium-dependent (C-type) lectins and galectins are found in model invertebrates and vertebrates, but not in yeast; immunoglobulin superfamily (I-type) lectins are only found in vertebrates. The evolutionary appearance of different classes of sugar-binding protein modules parallels a development towards more complex oligosaccharides that provide increased opportunities for specific recognition phenomena. An overall picture of the lectins present in humans can now be proposed. Based on our knowledge of the structures of several of the C-type carbohydrate-recognition domains, it is possible to suggest ligand-binding activity that may be associated with novel C-type lectin-like domains identified in a systematic screen of the human genome. Further analysis of the sequences of proteins containing these domains can be used as a basis for proposing potential biological functions.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
TF Molinski ◽  
EP Stout ◽  
LCY Yu ◽  
KM Truong ◽  
IN Pessah
Keyword(s):  

2014 ◽  
Vol 122 (03) ◽  
Author(s):  
I Schlottmann ◽  
M Ehrhart-Bornstein ◽  
M Wabitsch ◽  
SR Bornstein ◽  
V Lamounier-Zepter

2015 ◽  
Vol 53 (01) ◽  
Author(s):  
L Spomer ◽  
CGW Gertzen ◽  
D Häussinger ◽  
H Gohlke ◽  
V Keitel

1986 ◽  
Vol 55 (02) ◽  
pp. 240-245 ◽  
Author(s):  
M E Rybak

SummaryPlatelet membrane glycoproteins IIb and IIIa and platelet thrombospondin were incorporated onto phosphatidylcholine liposomes, by freeze thawing and sonication. Protein orientation on the liposomes was confirmed by susceptibility to neuraminidase cleavage and binding to lentil lectin-Sepharose (GPIIb-IIIa liposomes) and to heparin-Sepharose (thrombospondin liposomes). Glycoproteins Ilb-IIIa bound 125I-fibrinogen with Kd of 7.5 × 10™7M. Binding was reversible and calcium-dependent. Ilb-IIIa liposomes underwent fibrinogen-dependent aggregation in the presence of 10 mM CaCl2. Maximal aggregate formation was observed with a combination of IIb-IIIa liposomes and thrombospondin liposomes. This aggregation was partially inhibited by preincubation with monoclonal antibodies to the IIb-IIIa complex. Addition of EDTA caused complete reversal of aggregates. Thrombospondin liposomes also underwent fibrinogen and calcium dependent aggregation, however, this aggregation was less than that observed with the GPIIb-IIIa liposomes. Maximal aggregate formation was observed with a mixture of IIb-IIIa liposomes and thrombospondin liposomes. These studies demonstrate that GPIIb-IIIa and thrombospondin can be incorporated into phospholipid vesicles with preservation of function. Direct evidence is provided to demonstrate that glycoprotein lib and Ilia and fibrinogen are sufficient for platelet aggregation and to demonstrate that thrombospondin may also contribute to platelet aggregation.


2018 ◽  
Vol 34 (2) ◽  
pp. 259-265 ◽  
Author(s):  
Hemant B Kardile ◽  
◽  
Vikrant ◽  
Nirmal Kant Sharma ◽  
Ankita Sharma ◽  
...  

2018 ◽  
Vol 2 (3) ◽  
pp. 184-201
Author(s):  
George D Glinos ◽  
Irena Pastar ◽  
Marjana Tomic-Canic ◽  
Rivka C Stone

Darier disease (DD) is an autosomal dominant keratinizing genodermatosis that manifests clinically with red-brown pruritic papules in a seborrheic distribution often in association with palmoplantar pits and dystrophic nail changes. It is caused by mutation in ATP2A2 which encodes a sarco/endoplasmic reticulum calcium ATPase isoform 2 (SERCA2) pump that regulates calcium flux. Consequent alteration of intracellular calcium homeostasis is thought to impair trafficking of cellular adhesion proteins and to lead to aberrant keratinocyte differentiation, contributing to the characteristic histopathologic features of acantholysis and dyskeratosis in DD, though the precise mechanisms are incompletely understood. Previous studies have identified defective localization of desmosomal attachment proteins in skin biopsies and cultured keratinocytes from DD patients, but reports of effects on adherens junction proteins (including calcium-dependent E-cadherin) are conflicting. Here we describe a case of DD presenting with characteristic clinical and histologic features in which we performed immunofluorescence staining of four adherens junction-associated proteins (E-cadherin, α-catenin, β-catenin, and vinculin). In lesional (acantholytic) DD skin, we identified loss of distinctive bright membranous staining that was present at the periphery of keratinocytes throughout the epidermis in the healthy skin of a matched donor. Perilesional (non-acantholytic) portions of DD skin partially recapitulated the normal phenotype. Our findings support a role for SERCA2 dysfunction in impaired assembly of adherens junctions, which together with defective desmosomes contribute to acantholysis in DD.


Sign in / Sign up

Export Citation Format

Share Document