Delineation and interpretation of spatial coseismic response of groundwater levels in shallow and deep parts of an alluvial plain to different earthquakes: A case study of the Kumamoto City area, southwest Japan

2014 ◽  
Vol 83 ◽  
pp. 35-47 ◽  
Author(s):  
M. Parvin ◽  
N. Tadakuma ◽  
H. Asaue ◽  
K. Koike
Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 360 ◽  
Author(s):  
Dong-Sin Shih ◽  
Chia-Jeng Chen ◽  
Ming-Hsu Li ◽  
Cheng-Shin Jang ◽  
Che-Min Chang ◽  
...  

Groundwater, a salient water resource in Taiwan, has been subject to incessant and excessive pumping, inducing serious regional land subsidence and seawater intrusion. This study aims at assessing how excessive pumping impacts groundwater variations over the Pingtung Alluvial Plain (PAP) in Southwest Taiwan using both statistical and numerical techniques. We apply nonparametric methods to analyze the changing point and annual trend in various hydro-meteorological time series (e.g., rainfall, temperature, and groundwater levels (GLs)). Afterwards, we employ an integrated surface-subsurface model referred to as WASH123D to simulate GLs under the pumping-free scenario; any discrepancies identified between simulated and observed GLs could be an indicator of unregulated/illegal pumping. We find that annual GLs exhibit a significant increasing (decreasing) trend in the western (eastern) PAP. Our numerical experiment reveals diverging trends in simulated and observed GLs, mostly at the downstream of all the major tributaries, suggesting the consequence of unregulated/illegal pumping. Furthermore, upstream pumping may reduce lateral flow towards the downstream coastal area, triggering land subsidence in remote locations.


2001 ◽  
Vol 6 (1) ◽  
pp. 15-31 ◽  
Author(s):  
Charlie Q L Xue ◽  
Kevin K Manuel ◽  
Rex H Y Chung
Keyword(s):  

Author(s):  
S. Ye ◽  
Y. Wang ◽  
J. Wu ◽  
P. Teatini ◽  
J. Yu ◽  
...  

Abstract. The Suzhou-Wuxi-Changzhou (known as "Su-Xi-Chang") area, located in the southern part of Jiangsu Province, China, experienced serious land subsidence caused by overly exploitation of groundwater. The largest cumulative land subsidence has reached 3 m. With the rapid progress of land subsidence since the late 1980s, more than 20 earth fissures developed in Su-Xi-Chang area, although no pre-existing faults have been detected in the surroundings. The mechanisms of earth fissure generation associated with excessive groundwater pumping are: (i) differential land subsidence, (ii) differences in the thickness of the aquifer system, and (iii) bedrock ridges and cliffs at relatively shallow depths. In this study, the Guangming Village Earth Fissures in Wuxi area are selected as a case study to discuss in details the mechanisms of fissure generation. Aquifer exploitation resulted in a drop of groundwater head at a rate of 5–6 m yr−1 in the 1990s, with a cumulative drawdown of 40 m. The first earth fissure at Guangming Village was observed in 1998. The earth fissures, which developed in a zone characterized by a cumulative land subsidence of approximately 800 mm, are located at the flank of a main subsidence bowl with differential subsidence ranging from 0 to 1600 mm in 2001. The maximum differential subsidence rate amounts to 5 mm yr−1 between the two sides of the fissures. The fissure openings range from 30 to 80 mm, with a cumulative length of 1000 m. Depth of bed rock changes from 60 to 140 m across the earth fissure. The causes of earth fissure generation at Guangming Village includes a decrease in groundwater levels, differences in the thickness of aquifer system, shallow depths of bedrock ridges and cliffs, and subsequent differential land subsidence.


2016 ◽  
Author(s):  
John Gowing ◽  
Geoff Parkin ◽  
Nathan Forsythe ◽  
David Walker ◽  
Alemseged Tamiru Haile ◽  
...  

Abstract. There is a need for an evidence-based approach to identify how best to support development of groundwater for small scale irrigation in sub-Saharan Africa (SSA). We argue that it is important to focus this effort on shallow groundwater resources which are most likely to be used by poor rural communities in SSA. However, it is important to consider constraints, since shallow groundwater resources are likely to be vulnerable to over-exploitation and climatic variability. We examine here the opportunities and constraints and draw upon evidence from Ethiopia. We present a methodology for assessing and interpreting available shallow groundwater resources and argue that participatory monitoring of local water resources is desirable and feasible. We consider possib le models for developing distributed small-scale irrigation and assess its technical feasibility. Because of power limits on water lifting and also because of available technology for well construction, groundwater at depths of 50 m or 60 m cannot be regarded as easily accessible for small-scale irrigation. We therefore adopt a working definition of shallow groundwater as < 20 m depth. This detailed case study in the Dangila woreda in Ethiopia explores the feasibility of exploiting shallow groundwater for small-scale irrigation over a range of rainfall conditions. Variability of rainfall over the study period (9 % to 96 % probability of non-exceedance) does not translate into equivalent variability in groundwater levels and river baseflow. Groundwater levels, monitored by local communities, persist into the dry season to at least the end of December in most shallow wells, indicating that groundwater is available for irrigation use after the cessation of the wet season. Arguments historically put forward against the promotion of groundwater use for agriculture in SSA on the basis that aquifers are unproductive and irrigation will have unacceptable impacts on wetlands and other groundwater-dependent ecosystems appear exaggerated. It would be unwise to generalise from this case study to the whole of SSA, but useful insights into the wider issues are revealed by the case study approach. We believe there is a case for arguing that shallow groundwater in sub-Saharan Africa represents a neglected opportunity for sustainable intensification of small-scale agriculture.


2021 ◽  
Author(s):  
Miha Curk ◽  
Matjaž Glavan ◽  
Marina Pintar ◽  
Vesna Zupanc

&lt;p&gt;Groundwater is the main source of drinking water in Slovenia, but nitrate pollution originating from agricultural activities as well as urban sources such as faulty sewage systems is threatening its quality in several areas of the country. One of such is the Kr&amp;#353;ko-bre&amp;#382;i&amp;#353;ko polje alluvial plain in the southeast. The main aim of this study was to assess the water and nitrogen balance for three common land-use types, as well as the whole area. Three field trial sites were set up to monitor water and nitrogen balance. Gaps in data were further evaluated by SWAT model simulations. Results will contribute to the existing knowledge of nitrate pollution pathways in the area, and strengthen understanding of land use and soil type&amp;#8217;s influence on the process.&lt;/p&gt;&lt;p&gt;This work was funded by the Slovenian Research Agency project L4-8221 and IAEA TCP-SLO5004.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document