scholarly journals Effects of grain size on the chemical weathering index: A case study of Neogene fluvial sediments in southwest Japan

2019 ◽  
Vol 386 ◽  
pp. 1-8 ◽  
Author(s):  
Nozomi Hatano ◽  
Kohki Yoshida ◽  
Eiji Sasao
1997 ◽  
Vol 134 (4) ◽  
pp. 557-561
Author(s):  
KATSUHIRO NAKAYAMA

Miocene subtidal sandwave deposits in southwest Japan were influenced by periodic flow and steady flow. The sandwave deposits can be divided into five units, based on lithofacies and thickness. In order of accretion, unit 1 consists of unidirectional sand bedforms without mud drapes, unit 2 of unidirectional sand bedforms with thin, discontinuous mud drapes, unit 3 of bidirectional sand bedforms with thin continuous mud drapes, and units 4 and 5 of relatively thinner and smaller bidirectional sand bedforms with continuous mud drapes. The thickness of units 1 to 3 increase progressively to 2.6 m, and units 4 to 5 subsequently decrease from 2.0 to 1.0 m. Variations between the units are due to differing combinations of periodic and steady flow velocities. Palaeoflow velocity is estimated from grain size and unit thickness. Depth-mean velocities of steady flow components gradually decrease from 0.72 ms−1 to 0.16 ms−1 with unit accumulation.


1993 ◽  
Vol 309 ◽  
Author(s):  
Seshadri Ramaswami

AbstractA laser based non-destructive technique has been used to study the morphology of sputterdeposited aluminum alloy films. The data emanating from the Therma-wave Imager that makes use of this principle, has been correlated with reflectivity, grain size and micro-roughness of the film. In addition, through the use of a case study, this paper demonstrates the utility of this application as an in-line monitor in an integrated circuit fabrication line.


2012 ◽  
Vol 57 (19) ◽  
pp. 2433-2441 ◽  
Author(s):  
JianTing Ju ◽  
LiPing Zhu ◽  
JinLiang Feng ◽  
JunBo Wang ◽  
Yong Wang ◽  
...  

2014 ◽  
Vol 2 (2) ◽  
pp. 1047-1092 ◽  
Author(s):  
M. Attal ◽  
S. M. Mudd ◽  
M. D. Hurst ◽  
B. Weinman ◽  
K. Yoo ◽  
...  

Abstract. The characteristics of the sediment transported by rivers (e.g., sediment flux, grain size distribution – GSD –) dictate whether rivers aggrade or erode their substrate. They also condition the architecture and properties of sedimentary successions in basins. In this study, we investigate the relationship between landscape steepness and the grain size of hillslope and fluvial sediments. The study area is located within the Feather River Basin in Northern California, and studied basins are underlain exclusively by tonalite lithology. Erosion rates in the study area vary over an order of magnitude, from > 250 mm ka−1 in the Feather River canyon to < 15 mm ka−1 on an adjacent low relief plateau. We find that the coarseness of hillslope sediment increases with increasing hillslope steepness and erosion rates. We hypothesize that, in our soil samples, the measured ten-fold increase in D50 and doubling of the amount of fragments larger than 1 mm when slope increases from 0.38 to 0.83 m m−1 is due to a decrease in the residence time of rock fragments, causing particles to be exposed for shorter periods of time to processes that can reduce grain size. For slopes in excess of 0.7 m m−1, landslides and scree cones supply much coarser sediment to rivers, with D50 and D84 more than one order of magnitude larger than in soils. In the tributary basins of the Feather River, a prominent break in slope developed in response to the rapid incision of the Feather River. Downstream of the break in slope, fluvial sediment grain size increases, due to an increase in flow competence (mostly driven by channel steepening) but also by a change in sediment source and in sediment dynamics: on the plateau upstream of the break in slope, rivers transport easily mobilised fine-grained sediment derived exclusively from soils. Downstream of the break in slope, mass wasting processes supply a wide range of grain sizes that rivers entrain selectively, depending on the competence of their flow. Our results also suggest that in this study site, hillslopes respond rapidly to an increase in the rate of base-level lowering compared to rivers.


Sign in / Sign up

Export Citation Format

Share Document