scholarly journals Amorphous material in experimentally deformed mafic rock and its temperature dependence: Implications for fault rheology during aseismic creep and seismic rupture

2020 ◽  
Vol 138 ◽  
pp. 104081
Author(s):  
Sina Marti ◽  
Holger Stünitz ◽  
Renée Heilbronner ◽  
Oliver Plümper
2021 ◽  
Author(s):  
Matteo Demurtas ◽  
Oliver Plümper ◽  
Markus Ohl ◽  
Fabrizio Balsamo ◽  
Mattia Pizzati

<p>Faulting in seismically active regions commonly involves the deformation of unconsolidated to poorly lithified sediments at shallow to near-surface depths. When compared to classic crustal strength profiles that predict a velocity-strengthening behaviour for the first few km of depth, the propagation of seismic rupture to the surface appears counterintuitive. Rock deformation experiments have shown an inverse relationship between normal stress and displacement needed to the onset of dynamic weakening during seismic slip, meaning that for a seismic rupture to be able to propagate towards the surface, displacements should be large enough to counter the progressive decrease of normal and confining stresses.</p><p>In this contribution, we document the occurrence of mirror-like faults that formed within 20-30 m-thick, unconsolidated colluvium fan deposits at the hanging wall of the active Vado di Corno Fault Zone (VCFZ) in the Central Apennines, Italy. The deposits lie in direct contact with the master normal-fault surface, are Late Pleistocene to Holocene in age, and consist of angular carbonate clasts with grain size ranging ~0.1-10 mm derived from the dismantling of the adjacent VCFZ footwall. Field observations of cross cutting relationships and marker layer displacements suggest a maximum formation depth of the faults of c. 20-30 m and slip accommodated along single faults on the order of few cm. Faults are organised in three sets: subvertical, N-S and NE-SW trending faults, and WNW-ESE striking faults, synthetic and antithetic to the VCFZ master fault surface (N195/55°). Faults are commonly lineated with a dip-slip to slightly oblique kinematic.</p><p>Detailed microstructural analysis of the mirror faults shows extreme strain localization on a 2-5 µm thick principal slip zone composed of calcite nanograins ranging 10s-100s nm in size with amorphous material and phyllosilicates occurring along grain boundaries and within intragranular porosity. Locally, aggregates of nanograins coalesce and transition to µm-sized polygonal, larger grains. Calcite nanograins are mostly equant, with straight grain boundaries, 120° dihedral angles, and negligible porosity. These microstructures strongly resemble high temperature recrystallization structures documented along seismic faults exhumed from >5 km of depth, where stresses are significantly larger. In our case, field constraints show that deformation occurred in very confining stress conditions and with limited displacement.</p><p>Collectively, our observations provide new documentation on the conditions for the formation of mirror faults and new insights into the mechanics of faulting and strain accommodation in the shallowest part of the crust (< 1 km).</p>


1990 ◽  
Vol 5 (5) ◽  
pp. 932-941 ◽  
Author(s):  
P.J. Maziasz ◽  
D.F. Pedraza ◽  
J.P. Simmons ◽  
N.H. Packan

NiTi was irradiated with Ni ions at various temperatures in order to study the temperature dependence of the irradiation-induced crystalline-to-amorphous transition. The irradiations were conducted above the Af temperature, and thus the specimens contained only the ordered B2 (CsC1) phase. The irradiations to similar doses at 150, 200, and 250°C showed that the amorphization kinetics slow down appreciably as the temperature is increased in this range. No amorphization was detected at irradiation temperatures of 350°C or higher, even after doses of 4 dpa. The small volume fraction of amorphous material observed after irradiation to 0.67 dpa at 250°C indicates that the cutoff temperature for amorphization is in the vicinity of this temperature. The amorphous regions of partly amorphous samples are distributed in a nonuniform manner and exhibit a morphology similar to the martensitic microstructure that existed in the specimens before heating to the irradiation temperature. Large amorphous regions in these samples exhibit some very fine crystalline debris which tends to disappear with increasing irradiation dose. Post-irradiation annealing experiments indicated that no thermally activated crystallization occurred during irradiation at temperatures up to 250°C.


Author(s):  
Kenneth H. Downing ◽  
Robert M. Glaeser

The structural damage of molecules irradiated by electrons is generally considered to occur in two steps. The direct result of inelastic scattering events is the disruption of covalent bonds. Following changes in bond structure, movement of the constituent atoms produces permanent distortions of the molecules. Since at least the second step should show a strong temperature dependence, it was to be expected that cooling a specimen should extend its lifetime in the electron beam. This result has been found in a large number of experiments, but the degree to which cooling the specimen enhances its resistance to radiation damage has been found to vary widely with specimen types.


Author(s):  
J. Temple Black

In ultramicrotomy, the two basic tool materials are glass and diamond. Glass because of its low cost and ease of manufacture of the knife itself is still widely used despite the superiority of diamond knives in many applications. Both kinds of knives produce plastic deformation in the microtomed section due to the nature of the cutting process and microscopic chips in the edge of the knife. Because glass has no well defined slip planes in its structure (it's an amorphous material), it is very strong and essentially never fails in compression. However, surface flaws produce stress concentrations which reduce the strength of glass to 10,000 to 20,000 psi from its theoretical or flaw free values of 1 to 2 million psi. While the microchips in the edge of the glass or diamond knife are generally too small to be observed in the SEM, the second common type of defect can be identified. This is the striations (also termed the check marks or feathers) which are always present over the entire edge of a glass knife regardless of whether or not they are visable under optical inspection. These steps in the cutting edge can be observed in the SEM by proper preparation of carefully broken knives and orientation of the knife, with respect to the scanning beam.


Author(s):  
Sonoko Tsukahara ◽  
Tadami Taoka ◽  
Hisao Nishizawa

The high voltage Lorentz microscopy was successfully used to observe changes with temperature; of domain structures and metallurgical structures in an iron film set on the hot stage combined with a goniometer. The microscope used was the JEM-1000 EM which was operated with the objective lens current cut off to eliminate the magnetic field in the specimen position. Single crystal films with an (001) plane were prepared by the epitaxial growth of evaporated iron on a cleaved (001) plane of a rocksalt substrate. They had a uniform thickness from 1000 to 7000 Å.The figure shows the temperature dependence of magnetic domain structure with its corresponding deflection pattern and metallurgical structure observed in a 4500 Å iron film. In general, with increase of temperature, the straight domain walls decrease in their width (at 400°C), curve in an iregular shape (600°C) and then vanish (790°C). The ripple structures with cross-tie walls are observed below the Curie temperature.


Author(s):  
Naresh N. Thadhani ◽  
Thad Vreeland ◽  
Thomas J. Ahrens

A spherically-shaped, microcrystalline Ni-Ti alloy powder having fairly nonhomogeneous particle size distribution and chemical composition was consolidated with shock input energy of 316 kJ/kg. In the process of consolidation, shock energy is preferentially input at particle surfaces, resulting in melting of near-surface material and interparticle welding. The Ni-Ti powder particles were 2-60 μm in diameter (Fig. 1). About 30-40% of the powder particles were Ni-65wt% and balance were Ni-45wt%Ti (estimated by EMPA).Upon shock compaction, the two phase Ni-Ti powder particles were bonded together by the interparticle melt which rapidly solidified, usually to amorphous material. Fig. 2 is an optical micrograph (in plane of shock) of the consolidated Ni-Ti alloy powder, showing the particles with different etching contrast.


Author(s):  
M. Libera ◽  
J.A. Ott ◽  
K. Siangchaew ◽  
L. Tsung

Channeling occurs when fast electrons follow atomic strings in a crystal where there is a minimum in the potential energy (1). Channeling has a strong effect on high-angle scattering. Deviations in atomic position along a channel due to structural defects or thermal vibrations increase the probability of scattering (2-5). Since there are no extended channels in an amorphous material the question arises: for a given material with constant thickness, will the high-angle scattering be higher from a crystal or a glass?Figure la shows a HAADF STEM image collected using a Philips CM20 FEG TEM/STEM with inner and outer collection angles of 35mrad and lOOmrad. The specimen (6) was a cross section of singlecrystal Si containing: amorphous Si (region A), defective Si containing many stacking faults (B), two coherent Ge layers (CI; C2), and a contamination layer (D). CBED patterns (fig. lb), PEELS spectra, and HAADF signals (fig. lc) were collected at 106K and 300K along the indicated line.


Author(s):  
C. Barry Carter

This paper will review the current state of understanding of interface structure and highlight some of the future needs and problems which must be overcome. The study of this subject can be separated into three different topics: 1) the fundamental electron microscopy aspects, 2) material-specific features of the study and 3) the characteristics of the particular interfaces. The two topics which are relevant to most studies are the choice of imaging techniques and sample preparation. The techniques used to study interfaces in the TEM include high-resolution imaging, conventional diffraction-contrast imaging, and phase-contrast imaging (Fresnel fringe images, diffuse scattering). The material studied affects not only the characteristics of the interfaces (through changes in bonding, etc.) but also the method used for sample preparation which may in turn have a significant affect on the resulting image. Finally, the actual nature and geometry of the interface must be considered. For example, it has become increasingly clear that the plane of the interface is particularly important whenever at least one of the adjoining grains is crystalline.A particularly productive approach to the study of interfaces is to combine different imaging techniques as illustrated in the study of grain boundaries in alumina. In this case, the conventional imaging approach showed that most grain boundaries in ion-thinned samples are grooved at the grain boundary although the extent of this grooving clearly depends on the crystallography of the surface. The use of diffuse scattering (from amorphous regions) gives invaluable information here since it can be used to confirm directly that surface grooving does occur and that the grooves can fill with amorphous material during sample preparation (see Fig. 1). Extensive use of image simulation has shown that, although information concerning the interface can be obtained from Fresnel-fringe images, the introduction of artifacts through sample preparation cannot be lightly ignored. The Fresnel-fringe simulation has been carried out using a commercial multislice program (TEMPAS) which was intended for simulation of high-resolution images.


Author(s):  
Ming-Hui Yao ◽  
David J. Smith

The chemical properties of catalysts often depend on the size, shape and structure of the supported metal particles. To characterize these morphological features and relate them to catalysis is one of the main objectives for HREM study of catalysts. However, in plan view imaging, details of the shape and structure of ultra-fine supported particles (<2nm) are often obscured by the overlapping contrast from the support, and supported sub-nanometer particles are sometimes even invisible. Image simulations may help in the interpretation at HREM images of supported particles in particular to extract useful information about the size, shape and structure of the particles. It should also be a useful tool for evaluating the imaging conditions in terms of visibility of supported particles. P. L. Gai et al have studied contrast from metal particles supported on amorphous material using multislice simulations. In order to better understand the influence of a crystalline support on the visibility and apparent morphological features of supported fine particles, we have calculated images of Pt and Re particles supported on TiO2(rutile) in both plan view and profile view.


Sign in / Sign up

Export Citation Format

Share Document