3D-thrust fault pattern control on negative inversion: An analogue modelling perspective on central Italy

2021 ◽  
Vol 143 ◽  
pp. 104254
Author(s):  
Chiara Del Ventisette ◽  
Marco Bonini ◽  
Daniele Maestrelli ◽  
Federico Sani ◽  
Emanuele Iavarone ◽  
...  
2016 ◽  
Vol 59 ◽  
Author(s):  
Lorenzo Bonini ◽  
Francesco Emanuele Maesano ◽  
Roberto Basili ◽  
Pierfrancesco Burrato ◽  
Michele Matteo Cosimo Carafa ◽  
...  

We reconstruct the tectonic framework of the 24 August 2016, Amatrice earthquake. At least three main faults, including an older thrust fault (Sibillini Thrust), played an active role in the sequence. The mainshock nucleated and propagated along an extensional fault located in the footwall of the Sibillini Thrust, but due to the preliminary nature of the data the role of this thrust is still unclear. We illustrate two competing solutions: 1) the coseismic rupture started along an extensional fault and then partially used the thrust plane in extensional motion; 2) the thrust fault acted as an upper barrier to the propagation of the mainshock rupture, but was partially reactivated during the aftershock sequence. In both cases our tectonic reconstruction suggests an active role of the thrust fault, providing yet another example of how structures inherited from older tectonic phases may control the mainshock ruptures and the long-term evolution of younger seismogenic faults.


2004 ◽  
Vol 175 (4) ◽  
pp. 351-359 ◽  
Author(s):  
Vincent Gestain ◽  
Thierry Nalpas ◽  
Delphine Rouby ◽  
Laurie Barrier

Abstract In foldbelt faults, layers with ductile behaviour can form levels of décollement [Byerlee, 1978]. When these levels are prekinematic, they play a significant role in the genesis, evolution and final geometry of the foldbelt faults, as, for example in the Appalachian Mountains [Davis and Engelder, 1985], the Jura [Sommaruga, 1999], or the Pyrenees [Vergés et al., 1992]. Previous studies based on analogue modelling have shown how a prekinematic décollement level can influence the geometry of foldbelt faults and structures [Ballard, 1989; Colletta et al., 1991; Letouzey et al., 1995; Merle et Abidi, 1995]. However, no study has yet described the influence of synkinematic sedimentation of incompetent levels on the genesis and evolution of compressive structures. The laboratory experiments presented here are designed to explore some of the mechanisms of formation of synsedimentary thrust faults, in relation with the occurrence of a décollement layer during syntectonic sedimentation. Analogue modelling – Experimental procedure The models presented here were designed to simulate geological situations comparable to those observed on the border of an overthrust belt. The modelling techniques are similar to those usually applied in experiments on brittle-ductile systems at the Laboratory of Experimental Tectonics of the Geosciences department (Rennes University), and have been fully described in previous studies [e.g. Faugère and Brun, 1984; Vendeville et al., 1987; Davy and Cobbold, 1991]. The prekinematic and synkinematic brittle levels are represented by sand, while the prekinematic and synkinematic ductile levels are represented by silicone. The experimental apparatus is composed of a fixed and rigid basal plate over which a thin mobile plate is pushed at a constant rate. During shortening (of 5 cm), brittle sedimentation is simulated by sprinkling fresh sand onto the model, and ductile sedimentation is simulated by the deposition of a thin silicone plate onto the model. Photographs of the model surface are taken at regular time intervals to study the development of the structures. The internal structure is recorded from serial cross-sections cut after the experiments. The parameters tested are the sedimentation rate [see also Tondji Biyo, 1995; Nalpas et al., 1999; Barrier et al., 2002], and the presence and location of a synkinematic décollement layer. The sedimentation is homogeneously distributed on both sides of the relief developed above the thrust front, with a variable ratio R between the rate of sedimentation (vsed) and the rate of uplift (vup), with R taking the values (1) R = vsed/vup = 1/2, (2) R = 1 and (3) R = 2 [Barrier et al., 2002]. The décollement level is deposited at the beginning of sedimentation, either over the whole model or in front of the thrust throughout sedimentation. Results In all models, the progressive shortening is accommodated by two conjugate reverse faults. The major fault is antithetic to the displacement of the mobile wall. The synthetic fault is transitory [Ballard, 1989; Tondji Biyo, 1995]. In experiments without ductile sedimentation, the main thrust zone shows an increasing dip with each depositional increment [Barrier et al., 2002]. When the ductile level is deposited, (1) the dip of the main thrust decreases as it reaches the silicone, (2) a wedge of sand then penetrates the silicone forming a detachment, and (3) this wedge is abandoned and the main thrust fault cuts through the wedge, allowing the fault to propagate upward. At low sedimentation rate, the final geometry shows a major reverse fault made up of a ramp in the prekinematic sand and a flat in the synkinematic silicone. At high sedimentation rate, the major reverse fault is made up of a ramp in the prekinematic sand and a flat in the synkinematic silicone forming a distinctive wedge of sand and a prolongation of the ramp rear the sand wedge. The presence of a synkinematic ductile level in the model at the beginning of shortening favours decoupling between the prekinematic and the synkinematic sand: the faults in the prekinematic sand are not directly connected to the faults in the synkinematic sand. In addition, the deformation of the sand is different according to whether it is underneath or above the synkinematic ductile level. The prekinematic or synkinematic sand under the synkinematic ductile level is undeformed, whereas the synkinematic sand overlying the synkinematic ductile level is folded. Discussion In the presence of a ductile level, the reverse fault forms a flat in the silicone. The silicone leads to different behaviours of the fault and the synkinematic sand. This raises the question of how to identify synkinematic deposits in compressive basins. In most cases, only the geometry of the strata is used: if progressive unconformity is observed, the strata are synkinematic (growth strata), if not, the strata are deposited before or after the deformation. However, the evolution of growth-strata geometry is also related to the rheology of the rocks. Since geometrical criteria are insufficient, it is also necessary to take account of facies variations. Conclusions The presence of a synkinematic ductile level results in the development of a low angle thrust. The presence of synkinematic ductile levels facilitates deformation and the development of progressive unconformity in growth strata. Synkinematic sediments with brittle behaviour, deposited in front of a thrust fault, cannot develop a progressive unconformity. The absence of a progressive unconformity does not necessarily rule out a formation being synkinematic.


2019 ◽  
Vol 94 ◽  
pp. 04008
Author(s):  
Dina Anggreni Sarsito ◽  
Susilo Susilo ◽  
Alfend Rudyawan ◽  
Norman Arif Muhammad ◽  
Heri Andreas ◽  
...  

The western Sulawesi region has the main structural boundary, the Palu Koro Fault which divides from Palu Bay at the northest part to Central Sulawesi and continues into the Bone Gulf in southest part. In the southern part of this region, namely the South Sulawesi Arm zone, there is a Walanae fault which is defined as a sinistral wrench with a NW-SE direction that divides the South Arm of Sulawesi. This fault in the northern part is expected to continue to the northwest intersecting the Makassar Strait and unite with Paternoster-Lupar (Kalimantan) sutures and at the southest ending in Flores thrust fault. Walanae fault system did not only have one strand but was divided into 4 parts, namely the northern East Walanae Fault with a slip rate of 6.634 mm/year and the southern part with a 7.097 mm/year of slip rate, as well as the northern part of West Walanae Fault with a slip rate of 4.528 mm/year and the southern part with a slip rate of 3.270 mm/year. The northern part of Walanae fault system has opening or spreading pattern occurs that is in harmony with the formation of Walanae depression. By using simple geometric modeling, we found the fault system have 2 strain partitions with dominant sinistral strike slip pattern at southern part and combination between left lateral strike slip with thrust fault pattern at northern part.


Agronomie ◽  
2001 ◽  
Vol 21 (3) ◽  
pp. 267-276
Author(s):  
Daniela Businelli ◽  
Enrico Tombesi ◽  
Marco Trevisan

2019 ◽  
pp. 335-358
Author(s):  
Lorenzo Compagnucci ◽  
Alessio Cavicchi ◽  
Francesca Spigarelli

2015 ◽  
Vol 35 ◽  
pp. 268-271
Author(s):  
Michele Saroli ◽  
Michele Lancia ◽  
Marco Petitta ◽  
Gabriele Scarascia Mugnozza

Sign in / Sign up

Export Citation Format

Share Document