Estimation of a scale parameter in mixture models with unknown location

2005 ◽  
Vol 128 (1) ◽  
pp. 191-218 ◽  
Author(s):  
Constantinos Petropoulos ◽  
Stavros Kourouklis
2007 ◽  
Author(s):  
Danielle L. Cisler ◽  
Gitta H. Lubke
Keyword(s):  

2017 ◽  
Vol 36 (1) ◽  
pp. 26
Author(s):  
Purnama Rozak ◽  
Hafiedh Hasan ◽  
Sugarno Sugarno ◽  
Srifariyati Srifariyati ◽  
Afsya Septa Nugraha

<p>The success of the development of a nation is determined by the Human Development Index (HDI). International scale parameter indicates the level of development of human resources emphasizes on three areas: education, health, and income per capita. The various dimensions of community development was a collective responsibility to make it happen. One way to do is through the proselytizing activities of community empowerment. This is as done in the village of Pemalang district, Danasari that has HDI levels is low compared than other villages. Community development in this village was done by taking three primary focus , they are the field of economics, health, and education and religion.</p><p align="center"><strong>***</strong></p>Keberhasilan pembangunan suatu bangsa ditentukan oleh Human Develop-ment Indeks (HDI). Parameter berskala internsional ini menunjukkan tingkat pengembangan sumber daya manusia yang menitiberatkan pada tiga bidang yaitu pendidikan, kesehatan, dan pendapatan perkapita. Pengembangan masyarakat yang berbagai dimensi tadi merupakan tanggung jawab bersama untuk mewujudkannya. Salah satu cara yang dapat dilakukan adalah melalui kegiatan dakwah pemberdayaan masyarakat. Hal ini sebagaimana dilakukan di Desa Danasari Kabupaten Pemalang yang memiliki tingkat HDI yang rendah dibandingkan desa lainnya. Pemberdayaan masyarakat di desa ini dilakukan dengan mengambil tiga fokus utama yaitu bidang ekonomi, bidang kesehatan, dan pendidikan dan keagamaan. Potensi yang ada perlu diberdayakan secara bersama dengan tujuan pencapaian perbaikan kehidupan masyarakat desa Danasari.


Author(s):  
Claire Deakin ◽  
Charalampia Papadopoulou ◽  
Muthana Al Obaidi ◽  
Clarissa Pilkington ◽  
Lucy Wedderburn ◽  
...  

2019 ◽  
Vol 11 (4) ◽  
pp. 374 ◽  
Author(s):  
John Jones

In order to produce useful hydrologic and aquatic habitat data from the Landsat system, the U.S. Geological Survey has developed the “Dynamic Surface Water Extent” (DSWE) Landsat Science Product. DSWE will provide long-term, high-temporal resolution data on variations in inundation extent. The model used to generate DSWE is composed of five decision-rule based tests that do not require scene-based training. To allow its general application, required inputs are limited to the Landsat at-surface reflectance product and a digital elevation model. Unlike other Landsat-based water products, DSWE includes pixels that are only partially covered by water to increase inundation dynamics information content. Previously published DSWE model development included one wetland-focused test developed through visual inspection of field-collected Everglades spectra. A comparison of that test’s output against Everglades Depth Estimation Network (EDEN) in situ data confirmed the expectation that omission errors were a prime source of inaccuracy in vegetated environments. Further evaluation exposed a tendency toward commission error in coniferous forests. Improvements to the subpixel level “partial surface water” (PSW) component of DSWE was the focus of this research. Spectral mixture models were created from a variety of laboratory and image-derived endmembers. Based on the mixture modeling, a more “aggressive” PSW rule improved accuracy in herbaceous wetlands and reduced errors of commission elsewhere, while a second “conservative” test provides an alternative when commission errors must be minimized. Replication of the EDEN-based experiments using the revised PSW tests yielded a statistically significant increase in mean overall agreement (4%, p = 0.01, n = 50) and a statistically significant decrease (11%, p = 0.009, n = 50) in mean errors of omission. Because the developed spectral mixture models included image-derived vegetation endmembers and laboratory spectra for soil groups found across the US, simulations suggest where the revised DSWE PSW tests perform as they do in the Everglades and where they may prove problematic. Visual comparison of DSWE outputs with an unusual variety of coincidently collected images for locations spread throughout the US support conclusions drawn from Everglades quantitative analyses and highlight DSWE PSW component strengths and weaknesses.


Sign in / Sign up

Export Citation Format

Share Document