scholarly journals Comparison of dry matter losses and aflatoxin B1 contamination of paddy and brown rice stored naturally or after inoculation with Aspergillus flavus at different environmental conditions

2017 ◽  
Vol 73 ◽  
pp. 47-53 ◽  
Author(s):  
Sara Martín Castaño ◽  
Angel Medina ◽  
Naresh Magan
Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 391
Author(s):  
Christopher Hernandez ◽  
Laura Cadenillas ◽  
Anwar El Maghubi ◽  
Isaura Caceres ◽  
Vanessa Durrieu ◽  
...  

Aflatoxin B1 (AFB1) is a potent carcinogenic mycotoxin that contaminates numerous crops pre- and post-harvest. To protect foods and feeds from such toxins without resorting to pesticides, the use of plant extracts has been increasingly studied. The most interesting candidate plants are those with strong antioxidative activity because oxidation reactions may interfere with AFB1 production. The present study investigates how an aqueous extract of Mimosa tenuiflora bark affects both the growth of Aspergillus flavus and AFB1 production. The results reveal a dose-dependent inhibition of toxin synthesis with no impact on fungal growth. AFB1 inhibition is related to a down-modulation of the cluster genes of the biosynthetic pathway and especially to the two internal regulators aflR and aflS. Its strong anti-oxidative activity also allows the aqueous extract to modulate the expression of genes involved in fungal oxidative-stress response, such as msnA, mtfA, atfA, or sod1. Finally, a bio-guided fractionation of the aqueous extract demonstrates that condensed tannins play a major role in the anti-aflatoxin activity of Mimosa tenuiflora bark.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 385
Author(s):  
Alaa Baazeem ◽  
Alicia Rodriguez ◽  
Angel Medina ◽  
Naresh Magan

Pistachio nuts are an important economic tree nut crop which is used directly or processed for many food-related activities. They can become colonized by mycotoxigenic spoilage fungi, especially Aspergillus flavus, mainly resulting in contamination with aflatoxins (AFs), especially aflatoxin B1 (AFB1). The prevailing climate in which these crops are grown changes as temperature and atmospheric CO2 levels increase, and episodes of extreme wet/dry cycles occur due to human industrial activity. The objectives of this study were to evaluate the effect of interacting Climate Change (CC)-related abiotic factors of temperature (35 vs. 37 °C), CO2 (400 vs. 1000 ppm), and water stress (0.98–0.93 water activity, aw) on (a) growth (b) aflD and aflR biosynthetic gene expression and (c) AFB1 production by two strains A. flavus (AB3, AB10) in vitro on milled pistachio-based media and when colonizing layers of shelled raw pistachio nuts. The A. flavus strains were resilient in terms of growth on pistachio-based media and the colonisation of pistachio nuts with no significant difference when exposed to the interacting three-way climate-related abiotic factors. However, in vitro studies showed that AFB1 production was significantly stimulated (p < 0.05), especially when exposed to 1000 ppm CO2 at 0.98–0.95 aw and 35 °C, and sometimes in the 37 °C treatment group at 0.98 aw. The relative expression of the structural aflD gene involved in AFB1 biosynthesis was decreased or only slightly increased, relative to the control conditions at elevated CO, regardless of the aw level examined. For the regulatory aflR gene expression, there was a significant (p < 0.05) increase in 1000 ppm CO2 and 37 °C for both strains, especially at 0.95 aw. The in situ colonization of pistachio nuts resulted in a significant (p < 0.05) stimulation of AFB1 production at 35 °C and 1000 ppm CO2 for both strains, especially at 0.98 aw. At 37 °C, AFB1 production was either decreased, in strain AB3, or remained similar, as in strain AB10, when exposed to 1000 ppm CO2. This suggests that CC factors may have a differential effect, depending on the interacting conditions of temperature, exposure to CO2 and the level of water stress on AFB1 production.


2004 ◽  
Vol 55 (3) ◽  
pp. 253 ◽  
Author(s):  
John B. Gaughan ◽  
M. Shane Davis ◽  
Terry L. Mader

A controlled crossover experimental design was used to determine the effect of altered water sprinkling duration on heifers subjected to heat stress conditions. Heifers were subjected to 3 days of thermoneutral conditions followed by 3 days of hot conditions accompanied by water sprinkling between 1300 and 1500 h (HOT1–3). Then on the following 2 days (HOT4–5), environmental conditions remained similar, but 3 heifers were sprinkled between 1200 and 1600 h (WET) and 3 were not sprinkled (NONWET). This was followed by a 1-day period (HOT6) in which environmental conditions and sprinkling regimen were similar to HOT1–3. Rectal temperature (RT) was collected hourly, and respiration rate (RR) was monitored every 2 h on HOT Days 2, 4, 5, and 6. Dry matter intake and rate of eating were also determined. Sprinkling reduced RR and RT (P < 0.01) of all heifers during HOT1–3. During HOT4–5, WET heifers had lower (P < 0.05) RT than NONWET from 1300 to 700 h and lower RR from 1400 to 2000 h. Dry matter intake of NONWET heifers was reduced by 30.6% (P < 0.05) during HOT4–5 and by 51.2% on HOT6. On HOT4–5 the dry matter intakes of WET heifers were similar to intakes under thermoneutral conditions. During HOT6, RT was again reduced following sprinkling in all heifers. Comparison of RT and RR of NONWET and WET heifers on HOT1–3 v. HOT6 revealed that under similar environmental conditions, NONWET heifers had increased RT, partially due to carry-over from HOT4–5. However, NONWET heifers had 40% lower feed intake but tended to have lower RR on HOT6 v. HOT1–3. Only RR of WET heifers was greater on HOT6, possibly a result of switching from a 4-h back to a 2-h sprinkling period, while maintaining a 62% greater intake (5.80 v. 3.58 kg/day) than NONWET heifers during this time. Results suggest that inconsistent cooling regimens may increase the susceptibility of cattle to heat stress and elicit different physiological and metabolic responses.


Eisei kagaku ◽  
1991 ◽  
Vol 37 (2) ◽  
pp. 107-116 ◽  
Author(s):  
MITSUO NAKAZATO ◽  
SATOSHI MOROZUMI ◽  
KAZUO SAITO ◽  
KENJI FUJINUMA ◽  
TAICHIRO NISHIMA ◽  
...  

2006 ◽  
pp. 655-658 ◽  
Author(s):  
M.M. Moghaddam ◽  
E.M. Goltapeh ◽  
H. Hokmabadi ◽  
M. Haghdel ◽  
A.M. Mortazavi

Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 442 ◽  
Author(s):  
Isaura Caceres ◽  
Selma Snini ◽  
Olivier Puel ◽  
Florence Mathieu

Crop contamination by aflatoxin B1 is a current problem in tropical and subtropical regions. In the future, this contamination risk may be expanded to European countries due to climate change. The development of alternative strategies to prevent mycotoxin contamination that further contribute to the substitution of phytopharmaceutical products are thus needed. For this, a promising method resides in the use of biocontrol agents. Several actinobacteria strains have demonstrated to effectively reduce the aflatoxin B1 concentration. Nevertheless, the molecular mechanism of action by which these biological agents reduce the mycotoxin concentration has not been determined. The aim of the present study was to test the potential use of Streptomyces roseolus as a biocontrol agent against aflatoxin B1 contamination. Co-cultures with Aspergillus flavus were conducted, and the molecular fungal response was investigated through analyzing the q-PCR expression of 65 genes encoding relevant fungal functions. Moreover, kojic and cyclopiazonic acid concentrations, as well as morphological fungal changes were also analyzed. The results demonstrated that reduced concentrations of aflatoxin B1 and kojic acid were respectively correlated with the down-regulation of the aflatoxin B1 gene cluster and kojR gene expression. Moreover, a fungal hypersporulated phenotype and a general over-expression of genes involved in fungal development were observed in the co-culture condition.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Tihomir Kovač ◽  
Ivana Borišev ◽  
Biljana Crevar ◽  
Frane Čačić Kenjerić ◽  
Marija Kovač ◽  
...  

2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Larisa Shcherbakova ◽  
Natalia Statsyuk ◽  
Oleg Mikityuk ◽  
Tatyana Nazarova ◽  
Vitaly Dzhavakhiya

2015 ◽  
Vol 22 (2) ◽  
pp. 176-180 ◽  
Author(s):  
Xianwen Lai ◽  
He Zhang ◽  
Ruicen Liu ◽  
Chenglan Liu

Sign in / Sign up

Export Citation Format

Share Document