scholarly journals Streptomyces roseolus, A Promising Biocontrol Agent Against Aspergillus flavus, the Main Aflatoxin B1 Producer

Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 442 ◽  
Author(s):  
Isaura Caceres ◽  
Selma Snini ◽  
Olivier Puel ◽  
Florence Mathieu

Crop contamination by aflatoxin B1 is a current problem in tropical and subtropical regions. In the future, this contamination risk may be expanded to European countries due to climate change. The development of alternative strategies to prevent mycotoxin contamination that further contribute to the substitution of phytopharmaceutical products are thus needed. For this, a promising method resides in the use of biocontrol agents. Several actinobacteria strains have demonstrated to effectively reduce the aflatoxin B1 concentration. Nevertheless, the molecular mechanism of action by which these biological agents reduce the mycotoxin concentration has not been determined. The aim of the present study was to test the potential use of Streptomyces roseolus as a biocontrol agent against aflatoxin B1 contamination. Co-cultures with Aspergillus flavus were conducted, and the molecular fungal response was investigated through analyzing the q-PCR expression of 65 genes encoding relevant fungal functions. Moreover, kojic and cyclopiazonic acid concentrations, as well as morphological fungal changes were also analyzed. The results demonstrated that reduced concentrations of aflatoxin B1 and kojic acid were respectively correlated with the down-regulation of the aflatoxin B1 gene cluster and kojR gene expression. Moreover, a fungal hypersporulated phenotype and a general over-expression of genes involved in fungal development were observed in the co-culture condition.

Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 391
Author(s):  
Christopher Hernandez ◽  
Laura Cadenillas ◽  
Anwar El Maghubi ◽  
Isaura Caceres ◽  
Vanessa Durrieu ◽  
...  

Aflatoxin B1 (AFB1) is a potent carcinogenic mycotoxin that contaminates numerous crops pre- and post-harvest. To protect foods and feeds from such toxins without resorting to pesticides, the use of plant extracts has been increasingly studied. The most interesting candidate plants are those with strong antioxidative activity because oxidation reactions may interfere with AFB1 production. The present study investigates how an aqueous extract of Mimosa tenuiflora bark affects both the growth of Aspergillus flavus and AFB1 production. The results reveal a dose-dependent inhibition of toxin synthesis with no impact on fungal growth. AFB1 inhibition is related to a down-modulation of the cluster genes of the biosynthetic pathway and especially to the two internal regulators aflR and aflS. Its strong anti-oxidative activity also allows the aqueous extract to modulate the expression of genes involved in fungal oxidative-stress response, such as msnA, mtfA, atfA, or sod1. Finally, a bio-guided fractionation of the aqueous extract demonstrates that condensed tannins play a major role in the anti-aflatoxin activity of Mimosa tenuiflora bark.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuxin Fan ◽  
Jiayu Peng ◽  
Jiacheng Wu ◽  
Ping Zhou ◽  
Ruijie He ◽  
...  

Abstract Background Flavonoid biosynthesis in plants is primarily regulated at the transcriptional level by transcription factors modulating the expression of genes encoding enzymes in the flavonoid pathway. One of the most studied transcription factor complexes involved in this regulation consists of a MYB, bHLH and WD40. However, in Chinese Narcissus (Narcissus tazetta L. var. chinensis), a popular monocot bulb flower, the regulatory mechanism of flavonoid biosynthesis remains unclear. Results In this work, genes related to the regulatory complex, NtbHLH1 and a R2R3-MYB NtMYB6, were cloned from Chinese Narcissus. Phylogenetic analysis indicated that NtbHLH1 belongs to the JAF13 clade of bHLH IIIf subgroup, while NtMYB6 was highly homologous to positive regulators of proanthocyanidin biosynthesis. Both NtbHLH1 and NtMYB6 have highest expression levels in basal plates of Narcissus, where there is an accumulation of proanthocyanidin. Ectopic over expression of NtbHLH1 in tobacco resulted in an increase in anthocyanin accumulation in flowers, and an up-regulation of expression of the endogenous tobacco bHLH AN1 and flavonoid biosynthesis genes. In contrast, the expression level of LAR gene was significantly increased in NtMYB6-transgenic tobacco. Dual luciferase assays showed that co-infiltration of NtbHLH1 and NtMYB6 significantly activated the promoter of Chinese Narcissus DFR gene. Furthermore, a yeast two-hybrid assay confirmed that NtbHLH1 interacts with NtMYB6. Conclusions Our results suggest that NtbHLH1 may function as a regulatory partner by interacting directly with NtMYB6 to enhance proanthocyanidin accumulation in Chinese Narcissus.


Botany ◽  
2016 ◽  
Vol 94 (8) ◽  
pp. 615-634 ◽  
Author(s):  
Bianyun Yu ◽  
Margaret Y. Gruber ◽  
Shu Wei ◽  
Rong Zhou ◽  
Dwayne Hegedus ◽  
...  

Despite numerous studies on ABI4, its role in plant secondary metabolism has not been fully investigated. Here, we used metabolite profiling together with transcriptome analysis to demonstrate that ABI4 transcript levels regulate a host of secondary metabolite pathways and growth modalities in ABI4 over-expression (ABI4_OE) lines of Arabidopsis thaliana. This strategy provided a unique and comprehensive overview of the regulation of metabolic shifts in response to ABI4 transcription. We show that enhancement of ABI4 transcript levels changed seed proanthocyanidin (PA), flavonoid, and carotenoid levels in ABI4_OE seeds and 30-day-old shoots, as well as the expression of genes encoding enzymes involved in the production of these and other secondary metabolites in ABI4_OE shoots. In seeds, PA accumulated in very large uneven patches, which was dramatically different from the even distribution of PA in wild-type seeds. Shoots of ABI4_OE lines also exhibited altered expression of a range of genes involved in several aspects of plant development, including hormone and cell-wall synthesis. Alteration of such disparate secondary metabolite pathways, along with hormone and developmental pathways, suggests that ABI4 is a master regulator integrating these compounds with plant development.


2014 ◽  
Vol 38 ◽  
pp. 276-283 ◽  
Author(s):  
Andrea Astoreca ◽  
Graciela Vaamonde ◽  
Ana Dalcero ◽  
Sonia Marin ◽  
Antonio Ramos

2007 ◽  
Vol 58 (6) ◽  
pp. 490 ◽  
Author(s):  
Michael A. Ayliffe ◽  
Anthony J. Pryor

Activation tagging is a mutagenesis strategy that generates dominant, gain-of-function mutations as a consequence of gene over-expression. These mutations cause a class of mutant previously unobtainable by conventional mutagenesis. Unlike most mutant phenotypes, which are generally a consequence of gene inactivation, activation tagged phenotypes arise from excess functional gene product. Gene over-expression mutations are obtained by randomly inserting regulatory sequences throughout the genome, using either high-throughput plant transformation or mobile transposable elements to distribute these regulatory elements. Since the sequence of the regulatory element vector is known, it acts as a molecular tag, making isolation of the over-expressed gene a relatively straightforward process using standard molecular biological techniques. Activation tagged phenotypes have been generated by the over-expression of genes encoding a diverse range of protein and RNA products that are involved in all aspects of plant biogenesis. This mutation approach has been used extensively in Arabidopsis and to a lesser extent in several other species. In this review we summarise activation tagging in plants and suggest that the development of this mutagenesis strategy in more plants of agronomic significance is highly desirable.


2020 ◽  
Vol 6 (4) ◽  
pp. 289
Author(s):  
Sang-Cheol Jun ◽  
Jong-Hwa Kim ◽  
Kap-Hoon Han

In eukaryotes, the MAP kinase signaling pathway plays pivotal roles in regulating the expression of genes required for growth, development, and stress response. Here, we deleted the mpkB gene (AFLA_034170), an ortholog of the Saccharomyces cerevisiae FUS3 gene, to characterize its function in Aspergillus flavus, a cosmopolitan, pathogenic, and aflatoxin-producing fungus. Previous studies revealed that MpkB positively regulates sexual and asexual differentiation in Aspergillus nidulans. In A. flavus, mpkB deletion resulted in an approximately 60% reduction in conidia production compared to the wild type without mycelial growth defects. Moreover, the mutant produced immature and abnormal conidiophores exhibiting vesicular dome-immaturity in the conidiophore head, decreased phialide numbers, and very short stalks. Interestingly, the ΔmpkB mutant could not produce sclerotia but produced aflatoxin B1 normally. Taken together, these results suggest that the A. flavus MpkB MAP kinase positively regulates conidiation and sclerotia formation but is not involved in the production of secondary metabolites such as aflatoxin B1.


Sign in / Sign up

Export Citation Format

Share Document