Flexural and transversal wave motion in homogeneous isotropic thermoelastic plates by using asymptotic method

2010 ◽  
Vol 329 (7) ◽  
pp. 804-818 ◽  
Author(s):  
J.N. Sharma ◽  
P.K. Sharma ◽  
S.K. Rana
2011 ◽  
Vol 78 (6) ◽  
Author(s):  
J. N. Sharma ◽  
P. K. Sharma ◽  
S. K. Rana

The present investigation is concerned with the study of extensional and transversal wave motions in an infinite homogenous transversely isotropic, thermoelastic plate by using asymptotic method in the context of coupled thermoelasticity, Lord and Shulman (1967, “The Generalized Dynamical Theory of Thermoelasticity,” J. Mech. Phys. Solids, 15, pp. 299–309), and Green and Lindsay (1972, “Thermoelasticity,” J. Elast., 2, pp. 1–7) theories of generalized thermoelasticity. The governing equations for extensional, transversal, and flexural motions have been derived from the system of three-dimensional dynamical equations of linear thermoelasticity. The asymptotic operator plate model for extensional motion in a homogeneous transversely isotropic thermoelastic plate leads to sixth degree polynomial secular equation that governs frequency and phase velocity of various possible modes of wave propagation at all wavelengths. It is shown that the purely transverse motion (SH mode), which is not affected by thermal variations, gets decoupled from rest of the motion. The Rayleigh–Lamb frequency equation for the plate is expanded in power series in order to obtain polynomial frequency equation and velocity dispersion relations. Their validation has been established with that of asymptotic method. The special cases of short and long wavelength waves are also discussed. The expressions for group velocity of extensional and transversal modes have been derived. Finally, the numerical solution is carried out for homogeneous transversely isotropic plate of single crystal of zinc material. The dispersion curves of phase velocity and attenuation coefficient are presented graphically.


2011 ◽  
Vol 03 (03) ◽  
pp. 563-586 ◽  
Author(s):  
S. KUMAR ◽  
J. N. SHARMA ◽  
Y. D. SHARMA

In the present paper, the theory of generalized thermo-microstretch elasticity has been employed to study the propagation of straight and circular crested waves in microstretch thermoelastic plates bordered with inviscid liquid layers (or half-spaces), with varying temperature on both sides. The secular equations governing the wave motion in both rectangular and cylindrical plates have been investigated. The results in the case of thin (long wavelength) and thick (short wavelength) plates have also been obtained and discussed as special cases of this work. The secular equation in the case of microstretch coupled with thermoelastic, micropolar thermoelastic and thermoelastic plates can be obtained from the present analysis by an appropriate choice of relevant parameters. The results have been deduced and compared with the relevant publications available in the literature at the appropriate stages of this work. Finally, the analytical developments have been illustrated numerically for aluminum–epoxy-like material sandwiched in the inviscid liquid. The computer simulated results in respect of phase velocity, attenuation coefficient, specific loss factor of energy dissipation and relative frequency shift due to liquid layers on both sides of the plate are presented graphically.


2011 ◽  
Vol 42 (3) ◽  
pp. 267-283
Author(s):  
Rehan Ali Shah ◽  
Saeed Islam ◽  
A. M. Siddiqui ◽  
Ishtiaq Ali ◽  
Manzoor Ellahi

1996 ◽  
Vol 2 (2) ◽  
pp. 121-126 ◽  
Author(s):  
Masayoshi TSUBOI ◽  
Mitstoshi WATANABE ◽  
Shigeru HIRANO

Author(s):  
V.A. Bulanov ◽  
I.V. Korskov ◽  
A.V. Storozhenko ◽  
S.N. Sosedko

Описано применение акустического зондирования для исследования акустических характеристик верхнего слоя моря с использованием широкополосных остронаправленных инвертированных излучателей,устанавливаемых на дно. В основу метода положен принцип регистрации обратного рассеяния и отраженияот поверхности моря акустических импульсов с различной частотой, позволяющий одновременно измерятьрассеяние и поглощение звука и нелинейный акустический параметр морской воды. Многочастотное зондирование позволяет реализовать акустическую спектроскопию пузырьков в приповерхностных слоях моря,проводить оценку газосодержания и получать данные о спектре поверхностного волнения при различных состояниях моря вплоть до штормовых. Применение остронаправленных высокочастотных пучков ультразвукапозволяет разделить информацию о планктоне и пузырьках и определить с высоким пространственным разрешением структуру пузырьковых облаков, образующихся при обрушении ветровых волн, и структуру планктонных сообществ. Участие планктона в волновом движении в толще морской воды позволяет определитьпараметры внутренних волн спектр и распределение по амплитудам в различное время.This paper represents the application of acoustic probingfor the investigation of acoustical properties of the upperlayer of the sea using broadband narrow-beam invertedtransducers that are mounted on the sea bottom. Thismethod is based on the principle of the recording of thebackscattering and reflections of acoustic pulses of differentfrequencies from the sea surface. That simultaneouslyallows measuring scattering and absorption of the soundand non-linear acoustic parameter of seawater. Multifrequencyprobing allows performing acoustic spectroscopy ofbubbles in the near-surface layer of the sea, estimating gascontent, and obtaining data on the spectrum of the surfacewaves in various states of the sea up to a storm. Utilizationof the high-frequency narrow ultrasound beams allows us toseparate the information about plankton and bubbles and todetermine the structure of bubble clouds, created during thebreaking of wind waves, along with the structure of planktoncommunities with high spatial resolution. The participationof plankton in the wave motion in the seawater columnallows determining parameters of internal waves, such asspectrum and distribution of amplitudes at different times.


Sign in / Sign up

Export Citation Format

Share Document