Brake squeal reduction of vehicle disc brake system with interval parameters by uncertain optimization

2014 ◽  
Vol 333 (26) ◽  
pp. 7313-7325 ◽  
Author(s):  
Hui Lü ◽  
Dejie Yu
2021 ◽  
Vol 11 (6) ◽  
pp. 2625
Author(s):  
Juraj Úradníček ◽  
Miloš Musil ◽  
L’uboš Gašparovič ◽  
Michal Bachratý

The connection of two phenomena, nonconservative friction forces and dissipation-induced instability, can lead to many interesting engineering problems. We study the general material-dependent damping influence on the dynamic instability of disc brake systems leading to brake squeal. The effect of general damping is demonstrated on minimal and complex models of a disc brake. Experimental analyses through the frequency response function (FRF) show different damping of the brake system coalescent modes, indicating possible dissipation-induced instability. A complex system including material-dependent damping is defined in commercial finite element (FE) software. A FE model validated by experimental data on the brake-disc test bench is used to compute the influence of a pad and disc damping variations on the system stability using complexe igenvalue analysis (CEVA). Numerical analyses show a significant sensitivity of the experimentally verified unstable mode of the system to the ratio of the damping between the disc and the friction material components.


Author(s):  
Xu Wang ◽  
Sabu John ◽  
He Ren

Disc brake squeal can be classified as a form of friction-induced vibration. Eliminating brake noise is a classic challenge in the automotive industry. This paper presents methods for analyzing the unstable vibration of a car disc brake. The numerical simulation has been conducted, and its results are compared with those from the experimental tests. The root causes of brake squeal noise will be identified. Potential solutions for elimination of the brake squeal noise will be proposed. Firstly, new materials and technologies for the disc brake application will be explored, secondly, it will be illustrated how to avoid the brake squeal noise problem from the brake system design. Brake disc design changes for improving cooling performance, and service solutions for brake squeal noise will be presented.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Yaqoub Abdullah ◽  
Amr Baz

Abstract Brake squeal has been a challenging issue to overcome for the automotive sector. The phenomenon often underpins more serious mechanical issues leading to poor user satisfaction, compromised safety, and a negative impact on the market. Automotive manufacturers are highly motivated to solve the squealing problem to prevent sudden failure of the brake system, which can be catastrophic. This article provides an approach to mitigate the squealing of brakes through the application of piezoelectric patches shunted by appropriately tuned electrical networks. The designated piezoelectric patches used with the brake pads can provide a unique characteristic, namely, being able to convert the mechanical energy of squealing brakes into electrical energy. This energy can be dispersed throughout an electrical network, fostering greater stability and damping risk factors of the brake system. This technique is envisioned as empowering the disc brake systems to perform across a range of operating parameters in a robust fashion, without experiencing brake squealing. The model proposed in this article is a multifield finite element model that includes two degrees-of-freedom (DOFs) disc brake system model as well as 2DOFs for the shunted piezoelectric network to independently control the brake modes of oscillation and hence to enable the mitigation of the squealing threshold. The brake system establishes the stability limits as a function of the design parameters of the shunted piezoelectric network. The effectiveness of the developed system is also provided in a numerical examples that shows the effectiveness of the shunted piezoelectric networks in controlling brake squeal phenomenon. The method proposed in this article can be applied to distributed disc brakes as an extension of the current work.


Author(s):  
Yaqoub Abdullah ◽  
Amr Baz

Abstract Brake squeal phenomenon poses serious challenges to the automotive industry due to its technical complexity and the pressing need for mitigating its undesirable effects. More importantly, brake squeal causes significant customer dissatisfaction and adversely affects the subjective quality of the vehicles. These effects have substantial economic impact on the automotive industry. Furthermore, it is essential to properly treat the brake squeal problems in order to avoid unexpected catastrophic failure of the brake system. In this paper, it is proposed to mitigate the brake squeal problems by providing the brake pads with piezoelectric patches which are shunted by properly tuned electric networks. The shunted piezoelectric pads offer a unique ability to convert the mechanical energy induced by the brake squeal into electrical energy which can be dissipated into the network in order to enhance the damping and stability characteristics of the brake system. Accordingly, it is envisioned that the proposed approach would enable the disc brake systems to operate over broad ranges of operating parameters without experiencing the adverse effects of brake squeal. The proposed system is modeled by a simple two Degree-Of-Freedom (DOF) disc brake model. The structural DOF are integrated with the constitutive model of the shunted piezoelectric network in order to predict the threshold of brake squeal. The stability limits of the proposed brake system are established as a function of the design parameters of the shunted piezoelectric network. Numerical examples are presented to demonstrate the effectiveness of the proposed system in expanding the operating range of the brake system without experiencing squeal problems. Application of the proposed system to a distributed disc brake system model is a natural extension of the present work.


2020 ◽  
Vol 15 (4) ◽  
pp. 543-549
Author(s):  
Haydar Kepekci ◽  
Ergin Kosa ◽  
Cüneyt Ezgi ◽  
Ahmet Cihan

Abstract The brake system of an automobile is composed of disc brake and pad which are co-working components in braking and accelerating. In the braking period, due to friction between the surface of the disc and pad, the thermal heat is generated. It should be avoided to reach elevated temperatures in disc and pad. It is focused on different disc materials that are gray cast iron and carbon ceramics, whereas pad is made up of a composite material. In this study, the CFD model of the brake system is analyzed to get a realistic approach in the amount of transferred heat. The amount of produced heat can be affected by some parameters such as velocity and friction coefficient. The results show that surface temperature for carbon-ceramic disc material can change between 290 and 650 K according to the friction coefficient and velocity in transient mode. Also, if the disc material gray cast iron is selected, it can change between 295 and 500 K. It is claimed that the amount of dissipated heat depends on the different heat transfer coefficient of gray cast iron and carbon ceramics.


2017 ◽  
Author(s):  
Dejian Meng ◽  
Ziyi Wang ◽  
Lijun Zhang ◽  
Zhuoping Yu
Keyword(s):  

2012 ◽  
Vol 232 ◽  
pp. 461-464
Author(s):  
Le Hong Thai Huynh ◽  
Aleš Dittrich ◽  
Ondřej Dráb

The problem brake squeal is one of the important areas of application in the automotive industry. Most brake squeal is produced by vibration (resonance instability) of the brake components, especially the pads and discs are known as force-coupled excitation. Until now have many research about predict vibration and noise of disc brake but unfortunate the results is not satisfied. This paper presents model for prediction stability of disc brake for a model four degrees of freedom. The result shows stability of system and when occurrence brake squeal.


2019 ◽  
Vol 10 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Daniel Varecha ◽  
Robert Kohar ◽  
Frantisek Brumercik

Abstract The article is focused on braking simulation of automated guided vehicle (AGV). The brake system is used with a disc brake and with hydraulic control. In the first step, the formula necessary for braking force at the start of braking is derived. The stopping distance is 1.5 meters. Subsequently, a mathematical model of braking is created into which the formula of the necessary braking force is applied. The mathematical model represents a motion equation that is solved in the software Matlab by an approximation method. Next a simulation is created using Matlab software and the data of simulation are displayed in the graph. The transport speed of the vehicle is 1 〖m.s〗^(-1) and the weight of the vehicle is 6000 kg including load. The aim of this article is to determine the braking time of the device depending from the input data entered, which represent the initial conditions of the braking process.


Sign in / Sign up

Export Citation Format

Share Document