Lead ions abrogate lipopolysaccharide-induced nitric monoxide toxicity by reducing the expression of STAT1 and iNOS

2016 ◽  
Vol 37 ◽  
pp. 117-124 ◽  
Author(s):  
Michael Dörpinghaus ◽  
Anne Brieger ◽  
Olga Panichkina ◽  
Lothar Rink ◽  
Hajo Haase
Keyword(s):  
1986 ◽  
Vol 51 (6) ◽  
pp. 1340-1351 ◽  
Author(s):  
Rudolf Kohn ◽  
Karol Tihlárik

The binding of calcium and lead ions to carboxy derivatives of starch prepared by allowing nitrogen dioxide to act on native maize starch (procedure A) and on starch 2,3-dialdehyde derivatives of degrees of oxidation DO(d.a.) ≥ 0.94 (procedure B) was studied. The carboxy group content of the samples in the H+ form was 4.6 - 12.1 mmol g-1. The effect of alkaline medium on the stability of the carboxy derivatives and on their ability to bind and exchange cations was examined. The Ca2+ → 2K+ exchange was evaluated in terms of the decrease in the electrostatic free enthalpy Δ(Gel/N)KCa, determined by alkalimetric potentiometric titrations, and the binding of Pb2+ ions was evaluated in terms of the activity of the Pb2+ counter-ions determined in suspensions of Pb salts of the carboxy derivatives by means of an ion specific electrode. The IR and CD spectra revealed that the carboxystarch preparations obtained by procedure A contained, in addition to free carboxy groups, a considerable amount of carbonyl groups. During the conversion of the latter groups to the former, even in a weakly alkaline medium, the carboxy derivatives undergo an appreciable degradation and lose, to a great extent, their ability to bind and exchange cations. Procedure B, on the other hand, leads to highly selective starch and amylose carboxy derivatives, exhibiting a small amount of carbonyl groups and featuring a relative stability towards alkaline medium; their binding capacity is as high as 12 milliequivalents of cations per g of sample.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1617
Author(s):  
Silviu-Adrian Predoi ◽  
Carmen Steluta Ciobanu ◽  
Mikael Motelica-Heino ◽  
Mariana Carmen Chifiriuc ◽  
Monica Luminita Badea ◽  
...  

In the present study, a new low-cost bioceramic nanocomposite based on porous hydroxyapatite (HAp) and cetyl trimethyl ammonium bromide (CTAB) as surfactant was successfully obtained by a simple chemical co-precipitation. The composition and structure of the HAp-CTAB were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) spectrometer, and N2 adsorption/desorption analysis. The capacity of HAp-CTAB nanocomposites to remove the lead ions from aqueous solutions was studied by adsorption batch experiments and proved by Langmuir and Freundlich models. The Pb2+ removal efficiency of HAp-CTAB biocomposite was also confirmed by non-destructive ultrasound studies. The cytotoxicity assays showed that the HAp-CTAB nanocomposites did not induce any significant morphological changes of HeLa cells after 24 h of incubation or other toxic effects. Taken together, our results suggests that the obtained porous HAp-CTAB powder could be used for the decontamination of water polluted with heavy metals, such as Pb2+.


Sign in / Sign up

Export Citation Format

Share Document