scholarly journals P2.01-060 Comparative Analysis of PD-L1 Expression between Circulating Tumor Cells and Tumor Tissues in Patients with Lung Cancer

2017 ◽  
Vol 12 (1) ◽  
pp. S822-S823
Author(s):  
Yasuhiro Koh ◽  
Satomi Yagi ◽  
Hiroaki Akamatsu ◽  
Ayaka Tanaka ◽  
Kuninobu Kanai ◽  
...  
2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 7591-7591
Author(s):  
Marius Ilie ◽  
Elodie Long ◽  
Catherine Butori ◽  
Veronique Hofman ◽  
Celine Coelle ◽  
...  

7591 Background: The implementation of new theranostic biomarkers in Oncology is leading to impressive therapeutic improvements. In patients with lung cancer, the possibility to use Circulating Tumor Cells (CTCs) as a non-invasive theranostic approach is a clinically appealing challenge. Adenocarcinomas with EML4-ALK rearrangement are a new molecular subgroup of lung tumors with very good response to Crizotinib, an ALK inhibitor. We have thus aimed at developing an informative assay characterizing the ALK-gene status in CTCs isolated from patients with lung cancer. Methods: CTCs were isolated preoperatively using Isolation by Size of Epithelial Tumor cells method (ISET) from 65 patients with lung adenocarcinoma and blindly screened for ALK-gene status. ALK break-apart fluorescence in situ hybridization (FISH) (LSI ALK dual colour probes set) and immunochemistry using an anti-ALK antibody (5A4 clone) were blindly performed on CTCs and corresponding tumor tissues and results were compared. Results: Two patients consistently showed ALK-gene rearrangement and strong ALK protein expression in CTCs and corresponding tumor samples. Negative results (both ALK FISH and ALK immunochemistry) were found in CTCs and corresponding tumor samples from the other 63 patients. Conclusion: We have developed an approach allowing to characterize ALK-gene status in CTCs from patients with lung cancer and shown consistent results in CTC and tumor tissues. These preliminary results encourage larger studies and open new avenues for non-invasive, real-time, theranostic monitoring of cancer patients.


2016 ◽  
Vol 69 ◽  
pp. S14 ◽  
Author(s):  
Y. Koh ◽  
S. Yagi ◽  
H. Akamatsu ◽  
A. Tanaka ◽  
K. Kanai ◽  
...  

Human Cell ◽  
2021 ◽  
Author(s):  
Yan Lu ◽  
Yushuang Zheng ◽  
Yuhong Wang ◽  
Dongmei Gu ◽  
Jun Zhang ◽  
...  

AbstractLung cancer is the most fetal malignancy due to the high rate of metastasis and recurrence after treatment. A considerable number of patients with early-stage lung cancer relapse due to overlooked distant metastasis. Circulating tumor cells (CTCs) are tumor cells in blood circulation that originated from primary or metastatic sites, and it has been shown that CTCs are critical for metastasis and prognosis in various type of cancers. Here, we employed novel method to capture, isolate and classify CTC with FlowCell system and analyzed the CTCs from a cohort of 302 individuals. Our results illustrated that FlowCell-enriched CTCs effectively differentiated benign and malignant lung tumor and the total CTC counts increased as the tumor developed. More importantly, we showed that CTCs displayed superior sensitivity and specificity to predict lung cancer metastasis in comparison to conventional circulating biomarkers. Taken together, our data suggested CTCs can be used to assist the diagnosis of lung cancer as well as predict lung cancer metastasis. These findings provide an alternative means to screen early-stage metastasis.


2021 ◽  
Vol 20 ◽  
pp. 153303382199527
Author(s):  
Helin Wang ◽  
Jieqing Wu ◽  
Qi Zhang ◽  
Jianqing Hao ◽  
Ying Wang ◽  
...  

The CellSearch system is the only FDA approved and successful used detection technology for circulating tumor cells(CTCs). However, the process for identification of CTCs by CellSearch appear to damage the cells, which may adversely affects subsequent molecular biology assays. We aimed to explore and establish a membrane-preserving method for immunofluorescence identification of CTCs that keeping the isolated cells intact. 98 patients with lung cancer were enrolled, and the efficacy of clinical detection of CTCs was examined. Based on the CellSearch principle, we optimized an anti-EpCAM antibody and improved cell membrane rupture. A 5 ml peripheral blood sample was used to enrich CTCs with EpCAM immunomagnetic beads. Fluorescence signals were amplified with secondary antibodies against anti-EpCAM antibody attached on immunomagnetic beads. After identifying CTCs, single CTCs were isolated by micromanipulation. To confirm CTCs, genomic DNA was extracted and amplified at the single cell level to sequence 72 target genes of lung cancer and analyze the mutation copy number variations (CNVs) and gene mutations. A goat anti-mouse polyclonal antibody conjugated with Dylight 488 was selected to stain tumor cells. We identified CTCs based on EpCAM+ and CD45+ cells to exclude white blood cells. In the 98 lung cancer patients, the detection rate of CTCs (≥1 CTC) per 5 ml blood was 87.76%, the number of detections was 1–36, and the median was 2. By sequencing 72 lung cancer-associated genes, we found a high level of CNVs and gene mutations characteristic of tumor cells. We established a new CTCs staining scheme that significantly improves the detection rate and allows further analysis of CTCs characteristics at the genetic level.


2016 ◽  
Vol 16 (8) ◽  
pp. 859-867 ◽  
Author(s):  
Nicola Normanno ◽  
Antonella De Luca ◽  
Marianna Gallo ◽  
Nicoletta Chicchinelli ◽  
Antonio Rossi

2018 ◽  
Vol 9 (5) ◽  
pp. 640-645 ◽  
Author(s):  
Bing Tong ◽  
Yan Xu ◽  
Jing Zhao ◽  
Minjiang Chen ◽  
Wei Zhong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document