DFT calculations, molecular simulations, and electrochemical investigations of Nature-inspired phytochemical attributes of Achillea Millefolium plants for the construction of effective zinc-based organic anti-corrosion layer on carbon steel

Author(s):  
Asma Moradi ◽  
Zahra Ranjbar ◽  
Lei Guo ◽  
Sirous Javadpour ◽  
Jun Chang
2017 ◽  
Vol 64 (6) ◽  
pp. 644-653 ◽  
Author(s):  
A.U. Chaudhry ◽  
Vikas Mittal ◽  
M.I. Hashmi ◽  
Brajendra Mishra

Purpose Inorganic oxide addition can be synergistically beneficial in organic coatings if it can impart anti-corrosion properties and also act as an additive to enhance physical and/or chemical properties. The aim of this study was to evaluate the anti-corrosion benefits of nano nickel zinc ferrite (NZF) in the polymer film. Design/methodology/approach The time-dependent anti-corrosion ability of NZF (0.12-1.0 per cent w/w NZF/binder), applied on API 5L X-80 carbon steel, was characterized by electrochemical techniques such as open circuit potential, electrochemical impedance spectroscopy, linear polarization resistance and potentiodynamic. Characterization of corrosion layer was done by removing coatings after 216 h of immersion in 3.5 per cent w/v NaCl. Optical microscopy, field emission scanning electron microscopy and X-ray diffraction techniques were used to characterize the corroded surface. Findings Corrosion measurements confirm the electrochemical activity by metallic cations on the steel surface during corrosion process which results in improvement of anti-corrosion properties of steel. Moreover, surface techniques show compact corrosion layer coatings and presence of different metallic oxide phases for nanocomposite coatings. Originality/value The suggested protection mechanism was explained by the leaching and precipitation of metallic ion on the corroded surface which in turn slowed down the corrosion activity. Furthermore, improvement in barrier properties of rubber-based coatings was confirmed by the enhanced pore resistance. This work indicates that along with a wide range of applications of NZF, anti-corrosion properties can be taken as an addition.


2006 ◽  
Vol 352 (1-3) ◽  
pp. 107-115 ◽  
Author(s):  
V. Malinovschi ◽  
C. Ducu ◽  
N. Aldea ◽  
M. Fulger

2021 ◽  
Vol 2 (2) ◽  
pp. 190-209
Author(s):  
Andri Isak Thorhallsson ◽  
Sigrun Nanna Karlsdottir

The corrosion behaviour of a new titanium-based alloy, with nickel, molybdenum and zirconium as the main alloying elements, was studied in a simulated geothermal environment at various phase conditions of a corrosive fluid. Corrosion testing of carbon steel was also conducted for comparison. Both materials were tested at an elevated temperature between 180 and 350 °C and at a 10 bar gauge pressure in H2O containing HCl, H2S, and CO2 gases with an acidic condensate of pH = 3. The study found that the titanium alloy demonstrated good corrosion resistance in a single- and multiphase geothermal environment. In the testing volume, where the boiling of testing fluid occurred, the carbon steel was prone to localized damage of oxide, sulphide and chloride corrosion products. In the superheated testing volume, a homogeneous oxide corrosion layer was observed on the carbon steel. In the testing volume where condensation of the testing fluid occurred, a sulphide layer with an oxide sublayer was formed on the carbon steel.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5013
Author(s):  
Aeshah Hassan Alamri

Experimental insights into the synergistic effect of 1-acetyl-3-thiosemicarbazide (AST) and iodide ions on the corrosion of C1018 carbon steel in 1 M HCl solution were investigated using open-circuit potential (OCP), linear polarization resistance (LPR), electrochemical frequency modulation (EFM), potentiodynamic polarization (PDP) measurements and electrochemical impedance spectroscopy (EIS). Theoretical studies were further undertaken using ACD/LABS Percepta software, density functional theory (DFT) calculations and Monte Carlo simulation to understand the mechanism of the corrosion inhibition process and interpret the experimental results at the atomic and molecular levels. The electrochemical results obtained showed that AST alone inhibited the acid-induced corrosion of C1018 carbon steel. The inhibition efficiency increases with a concentration reaching up to 72.27% at 750 ppm of AST. The addition of 5 mM KI to 250 ppm of AST improved the inhibition efficiency to 81.64%. The solubility and protonated state results predicted using the ACD/LABS Percepta software showed that AST was highly soluble in the aqueous acidic medium and approximately 95% of AST exists in the neutral form in 1 M HCl (pH = 0). DFT calculations and a Monte Carlo simulation were utilized to predict the active reactivity sites of AST and calculate the lowest adsorption energy and configuration of AST alone and AST + iodide on/Fe (110)/water interface.


Author(s):  
Y. L. Chen ◽  
J. R. Bradley

Considerable effort has been directed toward an improved understanding of the production of the strong and stiff ∼ 1-20 μm diameter pyrolytic carbon fibers of the type reported by Koyama and, more recently, by Tibbetts. These macroscopic fibers are produced when pyrolytic carbon filaments (∼ 0.1 μm or less in diameter) are thickened by deposition of carbon during thermal decomposition of hydrocarbon gases. Each such precursor filament normally lengthens in association with an attached catalyst particle. The subject of filamentous carbon formation and much of the work on characterization of the catalyst particles have been reviewed thoroughly by Baker and Harris. However, identification of the catalyst particles remains a problem of continuing interest. The purpose of this work was to characterize the microstructure of the pyrolytic carbon filaments and the catalyst particles formed inside stainless steel and plain carbon steel tubes. For the present study, natural gas (∼; 97 % methane) was passed through type 304 stainless steel and SAE 1020 plain carbon steel tubes at 1240°K.


2001 ◽  
Vol 81 (12) ◽  
pp. 2797-2808
Author(s):  
Rustem Bagramov, Daniele Mari, Willy Benoi

1993 ◽  
Vol 90 (7-8) ◽  
pp. 917-922
Author(s):  
Y. Matsuda ◽  
M. Nishino ◽  
J. Ikeda

Sign in / Sign up

Export Citation Format

Share Document