Evaluation of Ni0.5Zn0.5Fe2O4 nanoparticles as anti-corrosion pigment in organic coatings for carbon steel

2017 ◽  
Vol 64 (6) ◽  
pp. 644-653 ◽  
Author(s):  
A.U. Chaudhry ◽  
Vikas Mittal ◽  
M.I. Hashmi ◽  
Brajendra Mishra

Purpose Inorganic oxide addition can be synergistically beneficial in organic coatings if it can impart anti-corrosion properties and also act as an additive to enhance physical and/or chemical properties. The aim of this study was to evaluate the anti-corrosion benefits of nano nickel zinc ferrite (NZF) in the polymer film. Design/methodology/approach The time-dependent anti-corrosion ability of NZF (0.12-1.0 per cent w/w NZF/binder), applied on API 5L X-80 carbon steel, was characterized by electrochemical techniques such as open circuit potential, electrochemical impedance spectroscopy, linear polarization resistance and potentiodynamic. Characterization of corrosion layer was done by removing coatings after 216 h of immersion in 3.5 per cent w/v NaCl. Optical microscopy, field emission scanning electron microscopy and X-ray diffraction techniques were used to characterize the corroded surface. Findings Corrosion measurements confirm the electrochemical activity by metallic cations on the steel surface during corrosion process which results in improvement of anti-corrosion properties of steel. Moreover, surface techniques show compact corrosion layer coatings and presence of different metallic oxide phases for nanocomposite coatings. Originality/value The suggested protection mechanism was explained by the leaching and precipitation of metallic ion on the corroded surface which in turn slowed down the corrosion activity. Furthermore, improvement in barrier properties of rubber-based coatings was confirmed by the enhanced pore resistance. This work indicates that along with a wide range of applications of NZF, anti-corrosion properties can be taken as an addition.

2016 ◽  
Vol 1139 ◽  
pp. 46-51
Author(s):  
Lidia Benea ◽  
Eliza Dănăilă ◽  
Valentin Marian Dumitraşcu

Vegetable extracts have become important as an environmentally acceptable, readily available and renewable source for wide range of inhibitors. They are the rich sources of ingredients which have very high inhibition efficiency. The aim of the present work is to study the corrosion inhibition characteristics of aqueous extract of USINHIB (the abbreviation attributed to garlic extract, derived from romanian language, which was used as vegetable inhibitor), which have been studied as an eco-friendly green inhibitor for corrosion control of carbon steel in 0.5 M hydrochloric acid. The inhibitive effect of naturally available vegetable extract USINHIB toward the corrosion of carbon steel in 0.5 M HCl solution has been investigated by electrochemical techniques. Open circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopy and cyclic voltammetry in presence and absence of vegetable inhibitor were used to provide detailed information about the corrosion of steel surface which occurs in acidic environment. The three electrode electrolytic cell was used. The obtained results showed the increase in the inhibition efficiency.


2021 ◽  
Vol 12 (5) ◽  
pp. 7075-7091

The extract of Fucus spiralis (FS) was tested as a corrosion inhibitor of carbon steel in a 1M HCl medium. The anti-corrosion properties were analyzed by gravimetric and electrochemical techniques such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The surface characterization of carbon steel submerged in the optimal solution was carried out using UV-Visible, UV-Vis-NIR, and Optical microscopy analyses. Electrochemical and gravimetric results demonstrated that inhibitory efficiencies increase with increasing inhibitor concentration and the efficiency reaches 87% at a concentration of 0.5 g/L. According to Tafel extrapolated polarisation measurements, the FS also worked as a mixed-type corrosion inhibitor and changed the mechanism of anodic reactions. EIS analysis showed that a depressed capacitive loop dominates the Nyquist plot of impedance and enhances the polarization resistance (Rp) to 161.9 Ω cm2 with a reduction of the double layer capacity (Cdl) of carbon steel to 61.8 μF/cm2. This protection is assured by an adsorption mechanism based on the isothermal Langmuir adsorption model, which positively affects the thermodynamic parameters. UV-Visible, UV-Vis-NIR analyses exhibited that inhibitor decreases the iron oxides like hematite, Magnetite, and Goethite, Maghemite, Lepidocrocite, δ-FeOOH of the metal surface and delays the dissolution of the bare metal of iron to the ferrous ions, notably that optical morphology showed that FS extract decreases the aggressivity of HCl.


2018 ◽  
Vol 47 (4) ◽  
pp. 350-359 ◽  
Author(s):  
Nivin M. Ahmed ◽  
Mostafa G. Mohamed ◽  
Reham H. Tammam ◽  
Mohamed R. Mabrouk

Purpose This study aims to apply novel anticorrosive pigments containing silica fume-phosphates (Si-Ph), which were prepared using core-shell technique by covering 80-90 per cent silica fume (core) with 10-20 per cent phosphates (shell) previously, to play dual functions simultaneously as anticorrosive pigments in coating formulations and as an anticorrosive admixture in concrete even if it is not present in the concrete itself. Two comparisons were held out to show the results of coatings on rebars containing core-shell pigments in concrete, and concrete admixtured with silica fume can perform a dual function as anticorrosive pigment and concrete admixture. The evaluation of corrosion protection efficiency of coatings containing core-shell pigments and those containing phosphates was performed. Design/methodology/approach Simple chemical techniques were used to prepare core-shell pigments, and their characterization was carried out in a previous work. These pigments were incorporated in solvent-based paint formulations based on epoxy resin. Different electrochemical techniques such as open-circuit potential and electrochemical impedance spectroscopy were used to evaluate the anticorrosive efficiency of the new pigments. Findings The electrochemical measurements showed that concrete containing coated rebars with core-shell pigments exhibited almost similar results to that of concrete admixtured with silica fume. Also, the anticorrosive performance of coatings containing Si-Ph pigments offered protection efficiency almost similar to that of phosphates, proving that these new pigments can perform both roles as anticorrosive pigment and concrete admixture. Originality/value Although the new Si-Ph pigments contain more than 80 per cent waste material, its performance can be compared to original phosphate pigments in the reinforced concrete.


2007 ◽  
Vol 546-549 ◽  
pp. 571-574
Author(s):  
Xing Wu Guo ◽  
Jian Wei Chang ◽  
Shang Ming He ◽  
Peng Huai Fu ◽  
Wen Jiang Ding

The corrosion behavior of GW63 (Mg-6wt.%Gd-3wt.%Y-0.4wt.%Zr) alloys in 5% NaCl aqueous solution has been investigated by PARSTAT 2273 instrument. The Open Circuit Potential (ECORR) vs. time curve, cyclic polarization (Pitting Scans) curve and Electrochemical Impedance Spectroscopy (EIS) was measured for the GW63 alloys in as-cast and T6 heat treatment conditions. The EIS results indicated that the tendency of impedance variation for as-cast condition was monotonic decreasing, however, the tendency of variation for T6 condition was not completely monotonic but the total tendency was decreasing. The values of impedance of GW63 alloy at 0.1 Hz are about 103 ohm-cm2 for as-cast and T6 condition.


2021 ◽  
Vol 2 (108) ◽  
pp. 68-74
Author(s):  
M. Ali ◽  
J.H. Mohmmed ◽  
A.A. Zainulabdeen

Purpose: This work aimed at evaluating the properties of the ethyl silicate-based coating that can be applied on low carbon steel. Design/methodology/approach: Two mixture ratio types (2:1, and 3:2) of resin and hardener respectively were used to prepared two specimen models (A and B). Findings: It found that some mechanical properties (tensile, hardness, and impact strength) of ethyl silicate resin were evaluated according to standard criteria. Research limitations/implications: The effect of heat treatments at various temperatures (100, 150, and 200°C) and holding at different times (10, 20 & 30) min on hardness was investigated. Practical implications: Moreover, an open circuit potential corrosion test with a solution of 3.5% Sodium Chloride at room temperature and 60°C was used to determine the corrosion resistance of low carbon steel specimens coated with the two mixture types. Originality/value: The effects of mixture ratios (for resin and hardener) and heat treatment conditions on properties of ethyl silicate-based coating were studied. From obtained results, acceptable values of tensile, hardness, and toughness were recorded. Increasing heat treatment temperature and holding time leads to enhance hardness for both model types. An open circuit potential (OCP) tests show that there is an enhancement of protective properties of ethyl silicate coatings with mixture type B in comparison with type A was achieved. Generally, the results indicate that specimen model B has higher properties as compared with specimen model A.


2021 ◽  
Vol 875 ◽  
pp. 60-69
Author(s):  
Syed Abbas Raza ◽  
Muhammad Imran Khan ◽  
Mairaj Ahmad ◽  
Danish Tahir ◽  
Asim Iltaf ◽  
...  

Titanium-Nickel pre-alloyed powder was reinforced with Nano-Silica in 2%, 4% , 6% and 8 wt. % due to effectiveness of Nanoscale ceramic Reinforcement in improving the properties of Metals and Alloys. The compositions of the Pre-Alloyed powders and Nano Silica Approximately 50 nm in diameter and spherical in shape were weighed and mixed in Planetary Ball Mill followed by compaction at 50 MPa using a Uniaxial Compaction machine The green pellets obtained were sintered in Argon Environment for 5 hrs and allowed to furnace cool. The pellets were then sectioned through their cross-section for slices 3 mm thick followed by Cold-mounting and Soldering followed by cold mounting additionally. The Samples were analyzed via X-Ray Diffraction (XRD) for phase distribution as a function of variation in nano-Silica reinforcements and Microstructural analysis was performed via Optical Microscope. The effect of Volume percentage on the densification was determined via Archimedes principle and Micro-Vickers hardness was used for mechanical Evaluation. The Electrochemical Properties were evaluated using Potentio-Dynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) in neutral salt solution (3.5% NaCl). The results indicated increasing dissolution of the TiNi phase into intermetallic Titanium-rich and Ni-rich phases in the matrix and hardening due to the Nano-Silica effect of Grain Boundary impingement and phase dissolution of Equiatomic phase and mixed behavior in Corrosion properties as determined by the electrochemical techniques whereas densification decreased due to poor plasticity of Nano-Silica and hinderance in diffusion during the sintering process.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Gamal A. El Mahdy ◽  
Ayman M. Atta ◽  
Amro K. F. Dyab ◽  
Hamad A. Al-Lohedan

New method was used to prepare magnetite nanoparticle based on reduction of Fe(III) ions with potassium iodide to produce Fe3O4nanoparticle. The prepared magnetite was stabilized with cross-linked polymer based on 2-acrylamido-2-methylpropane sulfonic acid (AMPS to prepare novel core-shell nanogel. In this respect, Fe3O4/poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS) magnetic nanogels with controllable particle size produced via free aqueous polymerization at 65°C have been developed for the first time. The polymer was crosslinked in the presence of N,N-methylenebisacrylamide (MBA) as a crosslinker and potassium peroxydisulfate (KPS) as redox initiator system. The structure and morphology of the magnetic nanogel were characterized by Fourier transform infrared spectroscopy (FTIR) and transmission and scanning electron microscopy (TEM and SEM). The effectiveness of the synthesized compounds as corrosion inhibitors for carbon steel in 1 M HCl was investigated by various electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed enhancement in inhibition efficiencies with increasing the inhibitor concentrations. The results showed that the nanogel particles act as mixed inhibitors. EIS data revealed thatRctincreases with increasing inhibitor concentration.


2019 ◽  
Vol 66 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Walid Belmaghraoui ◽  
Aimad Mazkour ◽  
Hicham Harhar ◽  
Mourad Harir ◽  
Souad El Hajjaji

Purpose This study aims to investigate the corrosion inhibition effect of extracted oil from Ziziphus lotus fruit on corrosion of C38 carbon steel in 5.5 M H3PO4 solution using potentiodynamic polarization and impedance techniques. Design/methodology/approach Oil composition was determined using gas chromatography, and the results showed that oleic and palmitic acids present approximately 84.0 per cent of its total chemical content. Electrochemical impedance spectroscopy (EIS) data were analyzed by adapting it to a well-developed electric circuit model. The inhibition efficiency of Z. lotus oil was calculated and compared using Tafel polarization and EIS. Findings Accordingly, the oil extract was found to act as an anodic type inhibitor. Furthermore, inhibition efficiency of Z. lotus oil extract increase with oil concentrations and achieve approximately 70.5 per cent at 3 g/L solution of Z. lotus oil. Originality/value The results obtained from different tested methods were in line, and the oil was able to reduce significantly the kinetics of the corrosion process of C38 carbon steel.


2015 ◽  
Vol 63 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Wilfrido Martinez-Molina ◽  
Andres Torres-Acosta ◽  
Rosalba Hernández-Leos ◽  
Elia Alonso-Guzman ◽  
Itzel Mendoza-Pérez ◽  
...  

Purpose – The purpose of this paper is to determine if a type of cactus mucilage, Opuntia ficus-indica (OFI), may act as a corrosion inhibitor for carbon steel in cement-based materials (mortar) exposed to chloride-laden environment. Design/methodology/approach – Mortar prisms, reinforced with carbon steel rods, were immersed in sodium chloride (NaCl) solution for five wet – dry cycles. The experimentation included electrochemical monitoring (corrosion potential, Ecorr, and polarization resistance, Rp) of carbon steel during the time of exposure until corrosion-induced cracking appeared at the mortar surface. Crack survey on the mortar prisms was performed. Carbon steel rods were retrieved from the mortar after crack survey and steel mass loss at the end of the experimental period was estimated. A comparison between the different mixtures was also performed. Findings – OFI mucilage did perform as a corrosion inhibitor of steel in chloride contaminated mortar. Research limitations/implications – The experimental program needs to be corroborated in concrete specimens with typical dimensions. The surface oxide/hydroxide formation of the carbon steel in contact with the OFI mucilage is still unknown; thus, electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD) analyses are needed. Practical implications – OFI mucilage is a suitable natural product that can be used to increase durability of concrete structures not only in countries where OFI cactus is produced, but also in many other countries where this plant is considered a plague. Originality/value – The new information obtained from this paper is the innovative use of a by-product of this cactus plant for construction industry applications.


MRS Advances ◽  
2017 ◽  
Vol 2 (62) ◽  
pp. 3909-3915
Author(s):  
Héctor M. Barbosa Cásarez ◽  
Araceli Espinoza Vázquez ◽  
Francisco J. Rodríguez-Gomez

AbstractPhenylcoumarin glucoside (4-PC) is a compound extracted from the plant Hintona latiflora and was studied as inhibitor for AISI 1018 steel corrosion in 3% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques, which may find application as eco-friendly corrosion inhibitors. The 4-PC provides inhibitor properties that protect AISI 1018 low carbon steel against corrosion at low concentrations (5 ppm) obtained by EIS. Polarization studies showed that the inhibitor was of mixed type. The inhibition efficiency by the two electrochemical techniques shows similar results. The inhibitor adsorption was demonstrated to be a combined process (physisorption and chemisorption) according to the Langmuir isotherm.


Sign in / Sign up

Export Citation Format

Share Document