scholarly journals MP40-02 IDENTIFICATION OF NATURALLY OCCURRING CALCIUM-OXALATE BINDING PROTEINS IN HUMAN URINE THAT PREVENT CRYSTAL ADHESION IN AN IN VITRO MODEL OF KIDNEY STONE FORMATION

2015 ◽  
Vol 193 (4S) ◽  
Author(s):  
Joel Koenig ◽  
Scott Manson ◽  
Qiusha Guo ◽  
Katelynn Moore ◽  
Paul Austin
2000 ◽  
Vol 98 (4) ◽  
pp. 471-480 ◽  
Author(s):  
Caroline DEAN ◽  
Jerry KANELLOS ◽  
Hung PHAM ◽  
Maria GOMES ◽  
Adrian OATES ◽  
...  

The bikunin peptide chain of the protease inhibitor inter-α-inhibitor (∣α∣) has been reported to be an inhibitor of calcium oxalate (CaOx) crystallization, and hence has been proposed as having a role in CaOx kidney stone formation. However, further experimental evidence is required to assess if fragments of ∣α∣ other than bikunin may play a role in the regulation of crystallization events in stone formation. The aim of the present study was to assess the effects of ∣α∣ and several of its derivatives on CaOx crystallization in a seeded inorganic system and to compare these effects with those of a known inhibitor of crystallization, prothrombin. ∣α∣ was purified from a preparation of human plasma and fragmented by alkaline hydrolysis, and two of its peptide chains, bikunin and heavy chain 1 (H1), were purified further by HPLC. Their purity was confirmed by SDS/PAGE. Using Coulter counter and [14C]oxalate analysis and scanning electron microscopy, ∣α∣, its H1 chain and bikunin from urine and from plasma were shown to be relatively weak inhibitors of CaOx crystallization in vitro at expected physiological concentrations. It was concluded that members of the ∣α∣ family may not be as important in kidney stone formation as has been generally proposed, although further studies are required before a possible role for ∣α∣ and its fragments in stone formation can be unambiguously discounted.


2012 ◽  
Vol 187 (4S) ◽  
Author(s):  
Atsushi Okada ◽  
Takahiro Yasui ◽  
Kazumi Taguchi ◽  
Yasuhiko Hirose ◽  
Kazuhiro Niimi ◽  
...  

2020 ◽  
Vol 171 ◽  
pp. 105861 ◽  
Author(s):  
Iain J. Abbott ◽  
Elke van Gorp ◽  
Rixt A. Wijma ◽  
Joseph Meletiadis ◽  
Johan W. Mouton ◽  
...  

2004 ◽  
Vol 65 (5) ◽  
pp. 1724-1730 ◽  
Author(s):  
Karyee Chow ◽  
James Dixon ◽  
Sally Gilpin ◽  
John P. Kavanagh ◽  
Popduri N. Rao

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qian-Long Peng ◽  
Chuang-Ye Li ◽  
Yao-Wang Zhao ◽  
Xin-Yuan Sun ◽  
Hong Liu ◽  
...  

The protective effects of Porphyra yezoensis polysaccharides (PYPs) with molecular weights of 576.2 (PYP1), 105.4 (PYP2), 22.47 (PYP3), and 3.89 kDa (PYP4) on the oxidative damage of human kidney proximal tubular epithelial (HK-2) cells and the differences in adherence and endocytosis of HK-2 cells to calcium oxalate monohydrate crystals before and after protection were investigated. Results showed that PYPs can effectively reduce the oxidative damage of oxalic acid to HK-2 cells. Under the preprotection of PYPs, cell viability increased, cell morphology improved, reactive oxygen species levels decreased, mitochondrial membrane potential increased, S phase cell arrest was inhibited, the cell apoptosis rate decreased, phosphatidylserine exposure reduced, the number of crystals adhered to the cell surface reduced, but the ability of cells to endocytose crystals enhanced. The lower the molecular weight, the better the protective effect of PYP. The results in this article indicated that PYPs can reduce the risk of kidney stone formation by protecting renal epithelial cells from oxidative damage and reducing calcium oxalate crystal adhesion, and PYP4 with the lowest molecular weight may be a potential drug for preventing kidney stone formation.


Sign in / Sign up

Export Citation Format

Share Document