Effects of inter-α-inhibitor and several of its derivatives on calcium oxalate crystallization in vitro

2000 ◽  
Vol 98 (4) ◽  
pp. 471-480 ◽  
Author(s):  
Caroline DEAN ◽  
Jerry KANELLOS ◽  
Hung PHAM ◽  
Maria GOMES ◽  
Adrian OATES ◽  
...  

The bikunin peptide chain of the protease inhibitor inter-α-inhibitor (∣α∣) has been reported to be an inhibitor of calcium oxalate (CaOx) crystallization, and hence has been proposed as having a role in CaOx kidney stone formation. However, further experimental evidence is required to assess if fragments of ∣α∣ other than bikunin may play a role in the regulation of crystallization events in stone formation. The aim of the present study was to assess the effects of ∣α∣ and several of its derivatives on CaOx crystallization in a seeded inorganic system and to compare these effects with those of a known inhibitor of crystallization, prothrombin. ∣α∣ was purified from a preparation of human plasma and fragmented by alkaline hydrolysis, and two of its peptide chains, bikunin and heavy chain 1 (H1), were purified further by HPLC. Their purity was confirmed by SDS/PAGE. Using Coulter counter and [14C]oxalate analysis and scanning electron microscopy, ∣α∣, its H1 chain and bikunin from urine and from plasma were shown to be relatively weak inhibitors of CaOx crystallization in vitro at expected physiological concentrations. It was concluded that members of the ∣α∣ family may not be as important in kidney stone formation as has been generally proposed, although further studies are required before a possible role for ∣α∣ and its fragments in stone formation can be unambiguously discounted.

2012 ◽  
Vol 11 (1) ◽  
pp. e856-e856a
Author(s):  
A. Okada ◽  
K. Taguchi ◽  
Y. Hirose ◽  
K. Niimi ◽  
Y. Fujii ◽  
...  

2002 ◽  
Vol 102 (4) ◽  
pp. 425-434 ◽  
Author(s):  
Phulwinder K. GROVER ◽  
Rosemary L. RYALL

In recent years there has been great interest in the putative role of prothrombin and its activation peptides, especially the urinary form of prothrombin fragment 1, in the pathogenesis of calcium oxalate (CaOx) urolithiasis. Previously, we showed that prothrombin and its activation peptides inhibit CaOx crystallization in inorganic conditions in vitro. The aim of the present study was to determine if this inhibitory activity is retained in undiluted human urine and, therefore, whether it is likely to have any influence under physiological conditions. A secondary objective was to assess the relationship between the structures of the proteins and their inhibitory activities. Prothrombin was purified from Prothrombinex-HT, cleaved with thrombin and the resulting fragment 1 (F1) and fragment 2 (F2) were purified. The purity of each protein was confirmed by SDS/PAGE, and their effects on CaOx crystallization in undiluted ultrafiltered human urine were determined at a final concentration 80.65nmol/l using Coulter Counter and [14C]oxalate analysis. The precipitated crystals were visualized using scanning electron microscopy. The Coulter Counter data revealed that, whereas prothrombin and its activation peptides did not affect the urinary metastable limit and the size of the precipitated particles, F1 did significantly reduce the latter. These findings were corroborated with scanning electron microscopy which also revealed that the reduction in particle size caused by F1 resulted from a decrease in the degree of crystal aggregation, rather than in the size of the individual crystals. The [14C]oxalate data showed that none of the proteins added significantly inhibited the mineral deposition. It was concluded that with the exception of F1, which does inhibit CaOx crystal aggregation, prothrombin and its activation peptides do not alter the deposition and aggregation of CaOx crystals in ultrafiltered human urine in vitro. Also, the γ-carboxyglutamic acid domain of prothrombin and F1, which is absent from thrombin and F2, is the region of the molecules that determines their potent inhibitory effects. The superior potency of F1, compared with prothrombin, probably results from the molecule's greater charge-to-mass ratio.


2012 ◽  
Vol 187 (4S) ◽  
Author(s):  
Atsushi Okada ◽  
Takahiro Yasui ◽  
Kazumi Taguchi ◽  
Yasuhiko Hirose ◽  
Kazuhiro Niimi ◽  
...  

Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
William J. Lamoreaux ◽  
David L. Smalley ◽  
Larry M. Baddour ◽  
Alfred P. Kraus

Infections associated with the use of intravascular devices have been documented and have been reported to be related to duration of catheter usage. Recently, Eaton et al. reported that Staphylococcus epidermidis may attach to silastic catheters used in continuous ambulatory peritoneal dialysis (CAPD) treatment. The following study presents findings using scanning electron microscopy (SEM) of S. epidermidis adherence to silastic catheters in an in vitro model. In addition, sections of polyvinyl chloride (PVC) dialysis bags were also evaluated by SEM.The S. epidermidis strain RP62A which had been obtained in a previous outbreak of coagulase-negative staphylococcal sepsis at local hospitals was used in these experiments. The strain produced surface slime on exposure to glucose, whereas a nonadherent variant RP62A-NA, which was also used in these studies, failed to produce slime. Strains were grown overnight on blood agar plates at 37°C, harvested from the surface and resuspended in sterile saline (0.85%), centrifuged (3,000 rpm for 10 minutes) and then washed twice in 0.1 M phosphate-buffered saline at pH 7.0. Organisms were resuspended at a concentration of ca. 106 CFU/ml in: a) sterile unused dianeal at 4.25% dextrose, b) sterile unused dianeal at 1.5% dextrose, c) sterile used dialysate previously containing 4.25% dextrose taken from a CAPD patient, and d) sterile used dialysate previously containing 1.5% dextrose taken from a CAPD patient.


1984 ◽  
Vol 52 (02) ◽  
pp. 102-104 ◽  
Author(s):  
L J Nicholson ◽  
J M F Clarke ◽  
R M Pittilo ◽  
S J Machin ◽  
N Woolf

SummaryA technique for harvesting mesothelial cells is described. This entails collagenase digestion of omentum after which the cells can be cultured. The technique has been developed using the rat, but has also been successfully applied to human tissue. Cultured rat mesothelial cells obtained in this way have been examined by scanning electron microscopy. Rat mesothelial cells grown on plastic film have been exposed to blood in an in vitro system using a Baumgartner chamber and have been demonstrated to support blood flow. No adhering platelets were observed on the mesothelial cell surface. Fibroblasts similarily exposed to blood as a control were washed off the plastic.


2017 ◽  
Vol 68 (6) ◽  
pp. 1188-1192
Author(s):  
Daniela Avram ◽  
Nicolae Angelescu ◽  
Dan Nicolae Ungureanu ◽  
Ionica Ionita ◽  
Iulian Bancuta ◽  
...  

The study in vitro of the glass powders bioactivity was performed by soaking them in simulated body fluid for 3 to 21 days at a temperature of 37�C and pH = 7.20. The synthesis de novo of hydroxyapatite, post soaking was confirmed by Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The study of the antimicrobial activity was performed by microbiological examination on two strains of pathogenic bacteria involved in postoperative nosocomial infections.


2021 ◽  
Vol 22 (11) ◽  
pp. 5730
Author(s):  
Jomarien García-Couce ◽  
Marioly Vernhes ◽  
Nancy Bada ◽  
Lissette Agüero ◽  
Oscar Valdés ◽  
...  

Hydrogels obtained from combining different polymers are an interesting strategy for developing controlled release system platforms and tissue engineering scaffolds. In this study, the applicability of sodium alginate-g-(QCL-co-HEMA) hydrogels for these biomedical applications was evaluated. Hydrogels were synthesized by free-radical polymerization using a different concentration of the components. The hydrogels were characterized by Fourier transform-infrared spectroscopy, scanning electron microscopy, and a swelling degree. Betamethasone release as well as the in vitro cytocompatibility with chondrocytes and fibroblast cells were also evaluated. Scanning electron microscopy confirmed the porous surface morphology of the hydrogels in all cases. The swelling percent was determined at a different pH and was observed to be pH-sensitive. The controlled release behavior of betamethasone from the matrices was investigated in PBS media (pH = 7.4) and the drug was released in a controlled manner for up to 8 h. Human chondrocytes and fibroblasts were cultured on the hydrogels. The MTS assay showed that almost all hydrogels are cytocompatibles and an increase of proliferation in both cell types after one week of incubation was observed by the Live/Dead® assay. These results demonstrate that these hydrogels are attractive materials for pharmaceutical and biomedical applications due to their characteristics, their release kinetics, and biocompatibility.


Sign in / Sign up

Export Citation Format

Share Document