Simultaneous detection and quantitation of Chikungunya, Dengue and West Nile viruses by multiplex RT-PCR assays and Dengue virus typing using High Resolution Melting

2009 ◽  
Vol 162 (1-2) ◽  
pp. 1-7 ◽  
Author(s):  
F. Naze ◽  
K. Le Roux ◽  
I. Schuffenecker ◽  
H. Zeller ◽  
F. Staikowsky ◽  
...  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Jinming Wang ◽  
Aihong Liu ◽  
Shangdi Zhang ◽  
Shandian Gao ◽  
Muhammad Rashid ◽  
...  

Abstract Background Bovine babesiosis is caused by protozoan parasites of the genus Babesia and presents a wide spectrum of clinical manifestations. Disease severity depends on the type of Babesia species infection. Generally, B. bovis and B. bigemina are considered as the causative agents of bovine babesiosis; in addition, Babesia ovata and B. major are a group of benign bovine piroplasms. Therefore, species identification is important for diagnosis, epidemiological investigations and follow-up management. Methods Real-time PCR combined with high resolution melting (RT-PCR-HRM) analysis was used to detect and discriminate four Babesia species infective to cattle, including Babesia bovis, B. bigemina, B. major and B. ovata. The melting profiles and melting temperatures (Tm) of the amplicon targeting 18S rRNA revealed differences that can discriminate the four Babesia spp. Sensitivity and specificity of the analytical method were evaluated using 50 blood samples collected from experimentally infected cattle and 240 blood samples from areas where bovine babesiosis is an issue. Results RT-PCR-HRM analysis allowed to detect and discriminate four Babesia spp. (B. bovis, B. bigemina, B. major and B. ovata), which were responsible for bovine babesiosis in China. The protocol was validated with DNA samples from experimentally infected cattle and field infection in cattle. Conclusions Our results indicate that RT-PCR-HRM is a fast and robust tool for the simultaneous detection and discrimination of four Babesia species that are responsible for bovine babesiosis in China. This approach is applicable for both field and experimental samples, thus it could be useful in epidemiological investigations and diagnoses of bovine babesiosis.


2012 ◽  
Vol 10 (3) ◽  
pp. 329-334 ◽  
Author(s):  
D.M. Valero-Hervás ◽  
P. Morales ◽  
M.J. Castro ◽  
P. Varela ◽  
M. Castillo-Rama ◽  
...  

“Slow” and “Fast” C3 complement variants (C3S and C3F) result from a g.304C>G polymorphism that changes arginine to glycine at position 102. C3 variants are associated with complement-mediated diseases and outcome in transplantation. In this work C3 genotyping is achieved by a Real Time PCR - High Resolution Melting (RT-PCR-HRM) optimized method. In an analysis of 49 subjects, 10.2% were C3FF, 36.7% were C3SF and 53.1% were C3SS. Allelic frequencies (70% for C3S and 30% for C3F) were in Hardy-Weinberg equilibrium and similar to those published previously. When comparing RT-PCR-HRM with the currently used Tetraprimer-Amplification Refractory Mutation System PCR (T-ARMS-PCR), coincidence was 93.8%. The procedure shown here includes a single primer pair and low DNA amount per reaction. Detection of C3 variants by RT-PCR-HRM is accurate, easy, fast and low cost, and it may be the method of choice for C3 genotyping.


2015 ◽  
Vol 41 (04) ◽  
pp. 229-235
Author(s):  
Kuang-Po Li ◽  
Shan-Chia Ou ◽  
Jui-Hung Shien ◽  
Poa-Chun Chang

Duck hepatitis A virus type 1 (DHAV-1) infection is a highly contagious and fatal disease of young ducklings. A live attenuated vaccine strain designated as 5886 has been used in Taiwan for the control of DHAV-1. Although several molecular biological methods are reported for diagnosis of DHAV-1 infection, none of them is able to discriminate between the vaccine strain and field viruses of DHAV-1. In the present study, a real-time reverse transcriptase polymerase chain reaction (RT-PCR) and high resolution melting (HRM) assay was developed for rapid detection and differentiation between the vaccine strain and field viruses of DHAV-1. This assay is highly specific for DHAV-1 and the detection limit is about 100 copies of the viral RNA. Experiments using fecal samples collected from ducklings experimentally infected with DHAV-1 showed that DHAV-1 could be detected in fecal samples as early as 6 h post-infection. In summary, a real-time RT-PCR and HRM assay is developed in this study and this assay could be valuable for diagnosis and surveillance of DHAV-1 infection in the field.


2019 ◽  
Vol 268 ◽  
pp. 53-55 ◽  
Author(s):  
José A. Boga ◽  
Marta E. Alvarez-Arguelles ◽  
Susana Rojo-Alba ◽  
Mercedes Rodríguez ◽  
María de Oña ◽  
...  

1998 ◽  
Vol 36 (5) ◽  
pp. 1388-1391 ◽  
Author(s):  
Juan E. Echevarría ◽  
Dean D. Erdman ◽  
Ella M. Swierkosz ◽  
Brian P. Holloway ◽  
Larry J. Anderson

Reverse transcription (RT)-PCR assays have been widely described for use in the diagnosis of human parainfluenza viruses (HPIVs) and other respiratory virus pathogens. However, these assays are mostly monospecific, requiring separate amplifications for each HPIV type. In the present work, we describe multiplex RT-PCR assays that detect and differentiate HPIV serotypes 1, 2, and 3 in a combined reaction. Specifically, a mixture of three pairs of primers to conserved regions of the hemagglutinin-neuraminidase gene of each HPIV serotype was used for primary amplification, yielding amplicons with similar sizes. For typing, a second amplification was performed with a mixture of nested primers, yielding amplicons with sizes easily differentiated by agarose gel electrophoresis. A modified single-amplification RT-PCR assay with fluorescence-labeled nested primers, followed by analysis of the labeled products on an automated sequencing gel, was also evaluated. Fifteen temporally and geographically diverse HPIV isolates from the Centers for Disease Control and Prevention archives and 26 of 30 (87%) previously positive nasopharyngeal specimens (8 of 10 positive for HPIV serotype 1 [HPIV1], 9 of 10 positive for HPIV2, and 9 of 10 positive for HPIV3) were positive and were correctly typed by both assays. Negative results were obtained with naso- or oropharyngeal specimens and/or culture isolates of 33 unrelated respiratory tract pathogens, including HPIV4, enterovirus, rhinovirus, respiratory syncytial virus, adenovirus, influenza virus, and Streptococcus pneumoniae. Our multiplex RT-PCR assays provide sensitive, specific, and simplified tools for the rapid diagnosis of HPIV infections.


Sign in / Sign up

Export Citation Format

Share Document