scholarly journals Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product

2021 ◽  
Vol 611 ◽  
pp. 118-134
Author(s):  
Victor Senoguchi Borges ◽  
Iryna Kashuba ◽  
Vladimir V. Sergeichuk ◽  
Eduardo Ventilari Sodré ◽  
André Zaidan
2000 ◽  
Vol 87 (2) ◽  
pp. 200
Author(s):  
Frédérique Watbled

Let $X$ be a Banach space compatible with its antidual $\overline{X^*}$, where $\overline{X^*}$ stands for the vector space $X^*$ where the multiplication by a scalar is replaced by the multiplication $\lambda \odot x^* = \overline{\lambda} x^*$. Let $H$ be a Hilbert space intermediate between $X$ and $\overline{X^*}$ with a scalar product compatible with the duality $(X,X^*)$, and such that $X \cap \overline{X^*}$ is dense in $H$. Let $F$ denote the closure of $X \cap \overline{X^*}$ in $\overline{X^*}$ and suppose $X \cap \overline{X^*}$ is dense in $X$. Let $K$ denote the natural map which sends $H$ into the dual of $X \cap F$ and for every Banach space $A$ which contains $X \cap F$ densely let $A'$ be the realization of the dual space of $A$ inside the dual of $X \cap F$. We show that if $\vert \langle K^{-1}a, K^{-1}b \rangle_H \vert \leq \parallel a \parallel_{X'} \parallel b \parallel_{F'}$ whenever $a$ and $b$ are both in $X' \cap F'$ then $(X, \overline{X^*})_{\frac12} = H$ with equality of norms. In particular this equality holds true if $X$ embeds in $H$ or $H$ embeds densely in $X$. As other particular cases we mention spaces $X$ with a $1$-unconditional basis and Köthe function spaces on $\Omega$ intermediate between $L^1(\Omega)$ and $L^\infty(\Omega)$.


2015 ◽  
Vol 55 (2) ◽  
Author(s):  
Adolfas Dargys

To have a closed system, the Maxwell electromagnetic equations should be supplemented by constitutive relations which describe medium properties and connect primary fields (E, B) with secondary ones (D, H). J.W. Gibbs and O. Heaviside introduced the basis vectors {i, j, k} to represent the fields and constitutive relations in the three-dimensional vectorial space. In this paper the constitutive relations are presented in a form of Cl3,0 algebra which describes the vector space by three basis vectors {σ1, σ2, σ3} that satisfy Pauli commutation relations. It is shown that the classification of electromagnetic wave propagation phenomena with the help of constitutive relations in this case comes from the structure of Cl3,0 itself. Concrete expressions for classical constitutive relations are presented including electromagnetic wave propagation in a moving dielectric.


1972 ◽  
Vol 24 (4) ◽  
pp. 686-695 ◽  
Author(s):  
Marvin Marcus ◽  
William Robert Gordon

Let V be an n-dimensional vector space over the complex numbers equipped with an inner product (x, y), and let (P, μ) be a symmetry class in the mth tensor product of V associated with a permutation group G and a character χ (see below). Then for each T ∊ Hom (V, V) the function φ which sends each m-tuple (v1, … , vm) of elements of V to the tensor μ(TV1, … , Tvm) is symmetric with respect to G and x, and so there is a unique linear map K(T) from P to P such that φ = K(T)μ.It is easily checked that K: Hom(V, V) → Hom(P, P) is a rational representation of the multiplicative semi-group in Hom(V, V): for any two linear operators S and T on VK(ST) = K(S)K(T).Moreover, if T is normal then, with respect to the inner product induced on P by the inner product on V (see below), K(T) is normal.


2020 ◽  
Vol 30 (1) ◽  
pp. 7-22
Author(s):  
Boris A. Pogorelov ◽  
Marina A. Pudovkina

AbstractThe Jevons group AS̃n is an isometry group of the Hamming metric on the n-dimensional vector space Vn over GF(2). It is generated by the group of all permutation (n × n)-matrices over GF(2) and the translation group on Vn. Earlier the authors of the present paper classified the submetrics of the Hamming metric on Vn for n ⩾ 4, and all overgroups of AS̃n which are isometry groups of these overmetrics. In turn, each overgroup of AS̃n is known to define orbital graphs whose “natural” metrics are submetrics of the Hamming metric. The authors also described all distance-transitive orbital graphs of overgroups of the Jevons group AS̃n. In the present paper we classify the distance-transitive orbital graphs of overgroups of the Jevons group. In particular, we show that some distance-transitive orbital graphs are isomorphic to the following classes: the complete graph 2n, the complete bipartite graph K2n−1,2n−1, the halved (n + 1)-cube, the folded (n + 1)-cube, the graphs of alternating forms, the Taylor graph, the Hadamard graph, and incidence graphs of square designs.


2018 ◽  
Vol 34 ◽  
pp. 71-114
Author(s):  
Clément De Seguins Pazzis

Let U and V be finite-dimensional vector spaces over a field K, and S be a linear subspace of the space L(U, V ) of all linear operators from U to V. A map F : S → V is called range-compatible when F(s) ∈ Im s for all s ∈ S. Previous work has classified all the range-compatible group homomorphisms provided that codimL(U,V )S ≤ 2 dim V − 3, except in the special case when K has only two elements and codimL(U,V )S = 2 dim V − 3. This article gives a thorough treatment of that special case. The results are partly based upon the recent classification of vector spaces of matrices with rank at most 2 over F2. As an application, the 2-dimensional non-reflexive operator spaces are classified over any field, and so do the affine subspaces of Mn,p(K) with lower-rank at least 2 and codimension 3.


2005 ◽  
Vol 07 (02) ◽  
pp. 145-165 ◽  
Author(s):  
ALICE FIALOWSKI ◽  
MICHAEL PENKAVA

We consider versal deformations of 0|3-dimensional L∞ algebras, also called strongly homotopy Lie algebras, which correspond precisely to ordinary (non-graded) three-dimensional Lie algebras. The classification of such algebras is well-known, although we shall give a derivation of this classification using an approach of treating them as L∞ algebras. Because the symmetric algebra of a three-dimensional odd vector space contains terms only of exterior degree less than or equal to three, the construction of versal deformations can be carried out completely. We give a characterization of the moduli space of Lie algebras using deformation theory as a guide to understanding the picture.


2009 ◽  
Vol 36 (8) ◽  
pp. 10914-10918 ◽  
Author(s):  
K. Rajan ◽  
V. Ramalingam ◽  
M. Ganesan ◽  
S. Palanivel ◽  
B. Palaniappan

2006 ◽  
Vol 13 (03) ◽  
pp. 239-253 ◽  
Author(s):  
V. I. Man'ko ◽  
G. Marmo ◽  
A. Simoni ◽  
F. Ventriglia

The tomographic description of a quantum state is formulated in an abstract infinite-dimensional Hilbert space framework, the space of the Hilbert-Schmidt linear operators, with trace formula as scalar product. Resolutions of the unity, written in terms of over-complete sets of rank-one projectors and of associated Gram-Schmidt operators taking into account their non-orthogonality, are then used to reconstruct a quantum state from its tomograms. Examples of well known tomographic descriptions illustrate the exposed theory.


Sign in / Sign up

Export Citation Format

Share Document