scholarly journals Measuring Spatial Connectivity between patches of the heat source and sink (SCSS): A new index to quantify the heterogeneity impacts of landscape patterns on land surface temperature

2022 ◽  
Vol 217 ◽  
pp. 104260
Author(s):  
Jing Gao ◽  
Jian Gong ◽  
Jianxin Yang ◽  
Jingye Li ◽  
Shichen Li
2022 ◽  
Vol 14 (2) ◽  
pp. 279
Author(s):  
Qiong Wu ◽  
Zhaoyi Li ◽  
Changbao Yang ◽  
Hongqing Li ◽  
Liwei Gong ◽  
...  

Urbanization processes greatly change urban landscape patterns and the urban thermal environment. Significant multi-scale correlation exists between the land surface temperature (LST) and landscape pattern. Compared with traditional linear regression methods, the regression model based on random forest has the advantages of higher accuracy and better learning ability, and can remove the linear correlation between regression features. Taking Beijing’s metropolitan area as an example, this paper conducted multi-scale relationship analysis between 3D landscape patterns and LST using Pearson Correlation Coefficient (PCC), Multiple Linear Regression and Random Forest Regression (RFR). The results indicated that LST was relatively high in the central area of Beijing, and decreased from the center to the surrounding areas. The interpretation effect of 3D landscape metrics on LST was more obvious than that of the 2D landscape metrics, and 3D landscape diversity and evenness played more important roles than the other metrics in the change of LST. The multi-scale relationship between LST and the landscape pattern was discovered in the fourth ring road of Beijing, the effect of the extent of change on the landscape pattern is greater than that of the grain size change, and the interpretation effect and correlation of landscape metrics on LST increase with the increase in the rectangle size. Impervious surfaces significantly increased the LST, while the impervious surfaces located at low building areas were more likely to increase LST than those located at tall building areas. It seems that increasing the distance between buildings to improve the rate of energy exchange between urban and rural areas can effectively decrease LST. Vegetation and water can effectively reduce LST, but large, clustered and irregularly shaped patches have a better effect on land surface cooling than small and discrete patches. The Coefficients of Rectangle Variation (CORV) power function fitting results of landscape metrics showed that the optimal rectangle size for studying the relationship between the 3D landscape pattern and LST is about 700 m. Our study is useful for future urban planning and provides references to mitigate the daytime urban heat island (UHI) effect.


2013 ◽  
Vol 16 (4) ◽  
pp. 871-886 ◽  
Author(s):  
Miaomiao Xie ◽  
Yanglin Wang ◽  
Qing Chang ◽  
Meichen Fu ◽  
Minting Ye

2021 ◽  
Vol 13 (8) ◽  
pp. 1526
Author(s):  
Yaoyao Zheng ◽  
Yao Li ◽  
Hao Hou ◽  
Yuji Murayama ◽  
Ruci Wang ◽  
...  

The rapid urbanization worldwide has brought various environmental problems. The urban heat island (UHI) phenomenon is one of the most concerning issues because of its strong relation with daily lives. Water bodies are generally considered a vital resource to relieve the UHI. In this context, it is critical to develop a method for measuring the cooling effect and scale of water bodies in urban areas. In this study, West Lake and Xuanwu Lake, two famous natural inner-city lakes, are selected as the measuring targets. The scatter plot and multiple linear regression model were employed to detect the relationship between the distance to the lake and land surface temperature based on Landsat 8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) and Sentinel-2 data. The results show that West Lake and Xuanwu Lake massively reduced the land surface temperature within a few hundred meters (471 m for West Lake and 336 m for Xuanwu Lake) and have potential cooling effects within thousands of meters (2900 m for West Lake and 3700 m for Xuanwu Lake). The results provide insights for urban planners to manage tradeoffs between the large lake design in urban areas and the cooling effect demands.


Author(s):  
Georgiana Grigoraș ◽  
Bogdan Urițescu

Abstract The aim of the study is to find the relationship between the land surface temperature and air temperature and to determine the hot spots in the urban area of Bucharest, the capital of Romania. The analysis was based on images from both moderate-resolution imaging spectroradiometer (MODIS), located on both Terra and Aqua platforms, as well as on data recorded by the four automatic weather stations existing in the endowment of The National Air Quality Monitoring Network, from the summer of 2017. Correlation coefficients between land surface temperature and air temperature were higher at night (0.8-0.87) and slightly lower during the day (0.71-0.77). After the validation of satellite data with in-situ temperature measurements, the hot spots in the metropolitan area of Bucharest were identified using Getis-Ord spatial statistics analysis. It has been achieved that the “very hot” areas are grouped in the center of the city and along the main traffic streets and dense residential areas. During the day the "very hot spots” represent 33.2% of the city's surface, and during the night 31.6%. The area where the mentioned spots persist, falls into the "very hot spot" category both day and night, it represents 27.1% of the city’s surface and it is mainly represented by the city center.


2021 ◽  
Vol 1825 (1) ◽  
pp. 012021
Author(s):  
Nasrullah Zaini ◽  
Muhammad Yanis ◽  
Marwan ◽  
Muhammad Isa ◽  
Freek van der Meer

Sign in / Sign up

Export Citation Format

Share Document