scholarly journals The evolution of soil conservation policies targeting land abandonment and soil erosion in Spain: A review

2019 ◽  
Vol 83 ◽  
pp. 174-186 ◽  
Author(s):  
Cynthia C.E. van Leeuwen ◽  
Erik L.H. Cammeraat ◽  
Joris de Vente ◽  
Carolina Boix-Fayos
1994 ◽  
Vol 17 ◽  
pp. 14-23
Author(s):  
Antonio José Teixeira Guerra

This paper aims to outline the need to include the social, economic and political issues on soil erosion studies. Therefore, the adoption of soil conservation strategies should take into consideration these issues. The paper also outlines the soil erosion problem, the political components of soil erosion, soil conservation policies, and finally shows why most soil conservation policies have failed, in developing countries, due to the traditional approaches used in most soil erosion and conservation programmes. Some alternative approaches are proposed, to deal with the problem, in order to reach sucess.


1999 ◽  
Vol 31 (3) ◽  
pp. 611-622 ◽  
Author(s):  
Rhonda Skaggs ◽  
Soumen Ghosh

AbstractMarkov chain analysis (one-step and long-run) is applied to the National Resources Inventory (NRI) database to evaluate changes in wind-based soil erosion rates over time. The research compares changes in soil erosion rates between NRI sample sites with and without applied conservation practices for a random sample of Great Plains counties. No significant differences between sites are found for half of the counties evaluated. The effectiveness and efficiency of conservation policies are thus questioned in light of these research results.


2016 ◽  
pp. 110-110
Author(s):  
P.Q. Xiao ◽  
W.Y. Yao ◽  
Z.Z. Shen ◽  
C.X. Yang

2020 ◽  
Vol 13 (3) ◽  
pp. 1117
Author(s):  
Julio Caetano Tomazoni ◽  
Ana Paula Vansan

Este trabalho tem como objetivo avaliar a erosão hídrica laminar do solo, por meio da Equação Universal de Perdas de Solos Revisada (RUSLE) na bacia hidrográfica do rio São José, localizada no município de Francisco Beltrão (PR).  A perda de solo média anual (A) foi determinada através da RUSLE para os anos 2000, 2005, 2009, 2015 e 2017 utilizando-se técnicas de geoprocessamento com o auxílio do software ArcGis 10.0. O fator erosividade da chuva (R) foi determinado utilizando-se dados pluviométricos correspondentes ao período de 1974 a 2016. O fator erodibilidade do solo (K) foi obtido através da análise de amostras de solo coletadas in loco. O fator topográfico (LS) foi estimado por meio dos dados altimétricos e hidrográficos da bacia. Os fatores de uso e manejo do solo (C) e de práticas conservacionistas do solo (P) foram determinados por meio da caracterização multitemporal do uso e ocupação do solo, através de imagens de satélite. O potencial natural de erosão (PNE) foi determinado pela multiplicação dos fatores R, K e LS.A estimativa de perda de solo (A) foi determinada pela multiplicação do PNE pelos fatores C e P.  Use of Geoprocessing Techniques to Study Laminar Water Erosion in Watershed of Southwest Paraná A B S T R A C TThe objective of this work is evaluate the soil erosion by the Universal Equation of Soil Losses Revised (RUSLE) in the São José river basin, located in the municipality of Francisco Beltrão (PR). The average annual soil loss (A) was determined through RUSLE for the years 2000, 2005, 2009, 2015 and 2017 using geoprocessing techniques with ArcGis 10.0 software. Rainfallerosivity (R) was determined using rainfall data from 1974 to 2016, being determined at 11521.26 11521,26 MJ.mm.ha-1.h-1.year-1. The soil erodibility factor (K) was obtained through the analysis of soil samples collected on the spot (0,03018 t.ha.h/ha.MJ.mm, 0,02771 t.ha.h/ha.MJ.mm e 0,02342 t.ha.h/ha.MJ.mm). The topographic factor (LS) was estimated by the altimetric and hydrographic data of the basin. Soil use and management (C) and soil conservation (P) were determined through multitemporal characterization of land use and occupation, using satellite images. The natural erosion potential (NEP) was determined by multiplying the R, K and LS factors, with more than half of the total area of the watershed with very strong PNE. The soil loss estimate (A) was determined by multiplying the NEP by factors C and P with predominance of the class called low (0 to 10 t/ha/year) denoting the reduction of erosion rates through factors C and P, helping to protect the soil from the erosion process.Key words: Soil Erosion; Watershed, Revised Universal Soil Loss Equation, Geoprocessing, Software.


2020 ◽  
Vol 12 (9) ◽  
pp. 1365 ◽  
Author(s):  
Panos Panagos ◽  
Cristiano Ballabio ◽  
Jean Poesen ◽  
Emanuele Lugato ◽  
Simone Scarpa ◽  
...  

Soil erosion is one of the eight threats in the Soil Thematic Strategy, the main policy instrument dedicated to soil protection in the European Union (EU). During the last decade, soil erosion indicators have been included in monitoring the performance of the Common Agricultural Policy (CAP) and the progress towards the Sustainable Development Goals (SDGs). This study comes five years after the assessment of soil loss by water erosion in the EU [Environmental science & policy 54, 438–447 (2015)], where a soil erosion modelling baseline for 2010 was developed. Here, we present an update of the EU assessment of soil loss by water erosion for the year 2016. The estimated long-term average erosion rate decreased by 0.4% between 2010 and 2016. This small decrease of soil loss was due to a limited increase of applied soil conservation practices and land cover change observed at the EU level. The modelling results suggest that, currently, ca. 25% of the EU land has erosion rates higher than the recommended sustainable threshold (2 t ha−1 yr−1) and more than 6% of agricultural lands suffer from severe erosion (11 t ha−1 yr−1). The results suggest that a more incisive set of measures of soil conservation is needed to mitigate soil erosion across the EU. However, targeted measures are recommendable at regional and national level as soil erosion trends are diverse between countries which show heterogeneous application of conservation practices.


2013 ◽  
Vol 838-841 ◽  
pp. 675-679 ◽  
Author(s):  
Miao Zhang ◽  
Fang Qing Chen ◽  
Jin Xia Zhang

Cynodon dactylon has become a dominant riparian species in the reservoir region after the Three Gorges project was finished. In order to determine the effect of the species in soil conservation and slope reinforcement and the variation over time, the soil erosion resistance and shear strength of plants soil-root systems were tested during different seasons in a year through control experiment. Results showed that C. dactylon roots enhanced significantly soil conservation and slope reinforcement. The tensile strength of C. dactylon roots reached from 65.34 to 91.22Kpa/mm2 after three to twelve month growth, so did the soil erosion resistance coefficient from 0.34 to 0.86, shear strength from 20.82 to 25.98Kpa increasing by 39.62%, 154.90% and 24.74% respectively. We conclude that the temporal dynamics of C. dactylon roots influenced the performance of soil-root system in soil conservation and slope reinforcement.


2012 ◽  
Vol 500 ◽  
pp. 162-167
Author(s):  
Shi Xian Gu ◽  
Xia Xu ◽  
Xiao Dan Wang

The vegetation factor C presented the human disturbance to the soil erosion and was important to the soil erosion estimation and soil conservation. However it was hard to be measured without a long term field observation and much harder in the frigid plateau region where the environment is fragile and tough, research needed and not easy to be conducted. This study used remote sensing to check detail land use/cover, estimated the factor C by vegetation rational model, and a factor C value table was built and C value map was drawn in the typical watershed of eastern Tibet to help to estimate the soil erosion in the material lack area.


2018 ◽  
Vol 46 (2) ◽  
pp. 553-562 ◽  
Author(s):  
Ataollah KAVIAN ◽  
Leila GHOLAMI ◽  
Maziar MOHAMMADI ◽  
Velibor SPALEVIC ◽  
Moghadeseh FALAH SORAKI

Soil erosion is one of the key challenges in soil and water conservation. Vegetation that covers soil and organic and inorganic mulch is very useful for the control of erosion processes. This study examined treatment with wheat residual (as agriculture mulch) on infiltration, time to runoff, runoff coefficient, sediment concentration and soil erosion processes. The study has been conducted for sandy-loam soil taken from summer rangeland (Northern Iran) with simulated rainfall intensities of 50 and 100 mm h-1. The experiment was conducted in slopes of 30% in three replications with two amounts of wheat residual of 50 and 90 %. The results showed that conservation percent of soil erosion for wheat residual 50 and 90% was 61.68 and 73.25%, respectively (in rainfall intensity of 50 mm h-1). Also, the conservation percent of soil erosion for wheat residual of 50 and 90% cover was 70.68 and 90.55, respectively (in rainfall intensity of 100 mm h-1). It was concluded that the conservation treatments could reduce runoff coefficient, sediment concentration and soil erosion and increase the time to runoff and infiltration coefficient. This effect was significant on time for infiltration, sediment concentration and soil erosion variables (R2=0.99), time to runoff and runoff coefficient variables (R2=0.95). The interaction effects of rainfall intensity and soil conservation was significant for sediment concentration and soil erosion variables (R2=0.99).


Sign in / Sign up

Export Citation Format

Share Document