scholarly journals Bendavia restores mitochondrial energy metabolism gene expression and suppresses cardiac fibrosis in the border zone of the infarcted heart

Life Sciences ◽  
2015 ◽  
Vol 141 ◽  
pp. 170-178 ◽  
Author(s):  
Jianru Shi ◽  
Wangde Dai ◽  
Sharon L. Hale ◽  
David A. Brown ◽  
Miao Wang ◽  
...  
Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2697
Author(s):  
Julia Brenmoehl ◽  
Daniela Ohde ◽  
Christina Walz ◽  
Martina Langhammer ◽  
Julia Schultz ◽  
...  

Physical inactivity is considered as one of the main causes of obesity in modern civilizations, and it has been demonstrated that resistance training programs can be used to reduce fat mass. The effects of voluntary exercise on energy metabolism are less clear in adipose tissue. Therefore, the effects of three different voluntary exercise programs on the control of energy metabolism in subcutaneous fat were tested in two different mouse lines. In a cross-over study design, male mice were kept for three or six weeks in the presence or absence of running wheels. For the experiment, mice with increased running capacity (DUhTP) were used and compared to controls (DUC). Body and organ weight, feed intake, and voluntary running wheel activity were recorded. In subcutaneous fat, gene expression of browning markers and mitochondrial energy metabolism were analyzed. Exercise increased heart weight in control mice (p < 0.05) but significantly decreased subcutaneous, epididymal, perinephric, and brown fat mass in both genetic groups (p < 0.05). Gene expression analysis revealed higher expression of browning markers and individual complex subunits present in the electron transport chain in subcutaneous fat of DUhTP mice compared to controls (DUC; p < 0.01), independent of physical activity. While in control mice, voluntary exercise had no effect on markers of mitochondrial fission or fusion, in DUhTP mice, reduced mitochondrial DNA, transcription factor Nrf1, fission- (Dnm1), and fusion-relevant transcripts (Mfn1 and 2) were observed in response to voluntary physical activity (p < 0.05). Our findings indicate that the superior running abilities in DUhTP mice, on one hand, are connected to elevated expression of genetic markers for browning and oxidative phosphorylation in subcutaneous fat. In subcutaneous fat from DUhTP but not in unselected control mice, we further demonstrate reduced expression of genes for mitochondrial fission and fusion in response to voluntary physical activity.


PLoS Genetics ◽  
2007 ◽  
Vol 3 (8) ◽  
pp. e135 ◽  
Author(s):  
Jong-Min Lee ◽  
Elena V Ivanova ◽  
Ihn Sik Seong ◽  
Tanya Cashorali ◽  
Isaac Kohane ◽  
...  

2015 ◽  
Vol 308 (11) ◽  
pp. F1217-F1228 ◽  
Author(s):  
Susana P. Pereira ◽  
Paulo J. Oliveira ◽  
Ludgero C. Tavares ◽  
António J. Moreno ◽  
Laura A. Cox ◽  
...  

Early life malnutrition results in structural alterations in the kidney, predisposing offspring to later life renal dysfunction. Kidneys of adults who were growth restricted at birth have substantial variations in nephron endowment. Animal models have indicated renal structural and functional consequences in offspring exposed to suboptimal intrauterine nutrition. Mitochondrial bioenergetics play a key role in renal energy metabolism, growth, and function. We hypothesized that moderate maternal nutrient reduction (MNR) would adversely impact fetal renal mitochondrial expression in a well-established nonhuman primate model that produces intrauterine growth reduction at term. Female baboons were fed normal chow diet or 70% of control diet (MNR). Fetal kidneys were harvested at cesarean section at 0.9 gestation (165 days gestation). Human Mitochondrial Energy Metabolism and Human Mitochondria Pathway PCR Arrays were used to analyze mitochondrially relevant mRNA expression. In situ protein content was detected by immunohistochemistry. Despite the smaller overall size, the fetal kidney weight-to-body weight ratio was not affected. We demonstrated fetal sex-specific differential mRNA expression encoding mitochondrial metabolite transport and dynamics proteins. MNR-related differential gene expression was more evident in female fetuses, with 16 transcripts significantly altered, including 14 downregulated and 2 upregulated transcripts. MNR impacted 10 transcripts in male fetuses, with 7 downregulated and 3 upregulated transcripts. The alteration in mRNA levels was accompanied by a decrease in mitochondrial protein cytochrome c oxidase subunit VIc. In conclusion, transcripts encoding fetal renal mitochondrial energy metabolism proteins are nutrition sensitive in a sex-dependent manner. We speculate that these differences lead to decreased mitochondrial fitness that contributes to renal dysfunction in later life.


2016 ◽  
Vol 39 (3) ◽  
pp. 827-836 ◽  
Author(s):  
Weijie Du ◽  
Haihai Liang ◽  
Xu Gao ◽  
Xiaoxue Li ◽  
Yue Zhang ◽  
...  

Background/Aims: Deregulated myocardial fibrosis is associated with a wide spectrum of cardiac conditions, being considered one of the major causes for heart disease. Our study was designed to investigate the role of microRNA-328 (miR-328) in regulating cardiac fibrosis. Methods: We induced cardiac fibrosis following MI by occlusion of the left coronary artery in C57BL/6 mice. Real-time PCR was employed to evaluate the level of miR-328. Masson's Trichrome stain was used to evaluate the development of fibrosis. Luciferase activity assay was performed to confirm the miRNA's binding site in the TGFβRIII gene. Western blot analysis was used to examine TGFβRIII, p-smad2/3 and TGF-β1 at protein level. Results: In this study, we found that miR-328 was significantly upregulated in the border zone of infarcted myocardium of wild type (WT) mice; TGFβRIII was downregulated whereas TGF-β1 was upregulated along with increased cardiac fibrosis. And miR-328 stimulated TGF-β1 signaling and promoted collagen production in cultured fibroblasts. We further found that the pro-fibrotic effect of miR-328 was mediated by targeting TGFβRIII. Additionally, cardiac fibrosis was significantly reduced in infarcted heart when treated with miR-328 antisense. Conclusions: These data suggest that miR-328 is a potent pro-fibrotic miRNA and an important determinant of cardiac fibrosis in diseased heart.


PLoS Genetics ◽  
2005 ◽  
Vol preprint (2007) ◽  
pp. e135
Author(s):  
Jong-Min Lee ◽  
Elena Ivanova ◽  
Ihn Sik Seong ◽  
Tanya Cashorali ◽  
Isaac Kohane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document