RAP-8 ameliorates liver fibrosis by modulating cell cycle and oxidative stress

Life Sciences ◽  
2019 ◽  
Vol 229 ◽  
pp. 200-209 ◽  
Author(s):  
Hongjiao Xu ◽  
Sihua Hong ◽  
Zhibin Yan ◽  
Qian Zhao ◽  
Ying Shi ◽  
...  
2020 ◽  
Vol 01 ◽  
Author(s):  
Ayşe Mine Yılmaz ◽  
Gökhan Biçim ◽  
Kübra Toprak ◽  
Betül Karademir Yılmaz ◽  
Irina Milisav ◽  
...  

Background: Different cellular responses influence the progress of cancer. In this study, we have investigated the effect of hydrogen peroxide and quercetin induced changes on cell viability, apoptosis and oxidative stress in human hepatocellular carcinoma (HepG2) cells. Methods: The effects of hydrogen peroxide and quercetin on cell viability, cell cycle phases and oxidative stress related cellular changes were investigated. Cell viability was assessed by WST-1 assay. Apoptosis rate, cell cycle phase changes and oxidative stress were measured by flow cytometry. Protein expressions of p21, p27, p53, NF-Kβ-p50 and proteasome activity were determined by Western blot and fluorometry, respectively. Results: Hydrogen peroxide and quercetin treatment resulted in decreased cell viability and increased apoptosis in HepG2 cells. Proteasome activity was increased by hydrogen peroxide but decreased by quercetin treatment. Conclusion: Both agents resulted in decreased p53 protein expression and increased cell death by different mechanisms regarding proteostasis and cell cycle phases.


2021 ◽  
Vol 12 (5) ◽  
pp. 2323-2334
Author(s):  
Shihong Zheng ◽  
Peichang Cao ◽  
Zequn Yin ◽  
Xuerui Wang ◽  
Yuanli Chen ◽  
...  

Apigenin prevented the DDC-induced abnormal lipid metabolism, liver damage and liver fibrosis by reducing inflammation and oxidative stress. Apigenin might be a potential drug for the treatment of cholestatic liver diseases.


2017 ◽  
Vol 123 (6) ◽  
pp. 1676-1681 ◽  
Author(s):  
Wataru Kimura ◽  
Yuji Nakada ◽  
Hesham A. Sadek

The underlying cause of systolic heart failure is the inability of the adult mammalian heart to regenerate damaged myocardium. In contrast, some vertebrate species and immature mammals are capable of full cardiac regeneration following multiple types of injury through cardiomyocyte proliferation. Little is known about what distinguishes proliferative cardiomyocytes from terminally differentiated, nonproliferative cardiomyocytes. Recently, several reports have suggested that oxygen metabolism and oxidative stress play a pivotal role in regulating the proliferative capacity of mammalian cardiomyocytes. Moreover, reducing oxygen metabolism in the adult mammalian heart can induce cardiomyocyte cell cycle reentry through blunting oxidative damage, which is sufficient for functional improvement following myocardial infarction. Here we concisely summarize recent findings that highlight the role of oxygen metabolism and oxidative stress in cardiomyocyte cell cycle regulation, and discuss future therapeutic approaches targeting oxidative metabolism to induce cardiac regeneration.


2017 ◽  
Vol 53 (2) ◽  
pp. 118 ◽  
Author(s):  
Vahid Khanjarsim ◽  
Jamshid Karimi ◽  
Iraj Khodadadi ◽  
Adel Mohammadalipour ◽  
Mohammad Taghi Goodarzi ◽  
...  

2004 ◽  
Vol 161 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Charles L. Limoli ◽  
Erich Giedzinski ◽  
Radoslaw Rola ◽  
Shinji Otsuka ◽  
Theo D. Palmer ◽  
...  

Author(s):  
Alaaeldin Ahmed Hamza ◽  
Mona Gamel Mohamed ◽  
Fawzy Mohamed Lashin ◽  
Amr Amin

Life Sciences ◽  
2020 ◽  
Vol 243 ◽  
pp. 117271 ◽  
Author(s):  
Boris Rodenak-Kladniew ◽  
Agustina Castro ◽  
Peter Stärkel ◽  
Marianela Galle ◽  
Rosana Crespo

Aging Cell ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Lisa A. Lesniewski ◽  
Douglas R. Seals ◽  
Ashley E. Walker ◽  
Grant D. Henson ◽  
Mark W. Blimline ◽  
...  

2007 ◽  
Vol 0 (0) ◽  
pp. 070928213402001-??? ◽  
Author(s):  
Ebtehal El-Demerdash ◽  
Omar M Abdel Salam ◽  
Seham A El-Batran ◽  
Heba MI Abdallah ◽  
Nermeen M Shaffie

Sign in / Sign up

Export Citation Format

Share Document