scholarly journals Acute gene expression changes in the mouse hippocampus following a combined Gulf War toxicant exposure

Life Sciences ◽  
2021 ◽  
pp. 119845
Author(s):  
Kathleen E. Murray ◽  
Vedad Delic ◽  
Whitney A. Ratliff ◽  
Kevin D. Beck ◽  
Bruce A. Citron
2021 ◽  
Vol 21 ◽  
Author(s):  
Xinwei Huang ◽  
Xiuqing Li ◽  
Lijuan Yang ◽  
Pengfei Wang ◽  
Jingyuan Yan ◽  
...  

Aims: We aim to define parameters affecting the safety and long-term transgene expression of attenuated HSV-1 vectors and optimize the expression cassettes to achieve robust and sustained expression in CNS. Background: Engineered, attenuated Herpes simplex virus (HSV) vectors are promising vehicles for gene delivery to the peripheral and central nervous systems. The virus latent promoter (LAP) is commonly used to drive exogenous gene expression; however, parameters affecting the safety and long-term transgene expression of attenuated HSV-1 vectors have not been fully understood. Objective: This study aimed to construct attenuated HSV-1 vectors using the CRISPR-Cas9 system and examine the influence of transgene cassette construction and insertion site on transgene expression and vector safety. Method: In this study, we used a CRISPR-Cas9 system to accurately and efficiently edit attenuated HSV-1 strain 1716, and constructed two series of recombinant virus LMR and LMRx with different sets of gene cassettes insertion in Exon1(LAP2) and 2.0 kb intron downstream of LAP, respectively. The transgene expression and viral gene transcriptional kinetics were compared in in-vitro cell lines. The reporter gene expression and safety profiles of each vector were further evaluated in the mouse hippocampus gene transduction model. Result: The in-vitro cell line analysis indicated that the insertion of a gene expression cassette would disrupt virus gene transcription. Mouse hippocampus transducing analysis suggested that complete expression cassette insertion at 2.0 kb intron could achieve robust and longtime gene expression than the other constructs. Recombinants with gene expression cassettes lacked Poly (A), which induced significant neuronal inflammation due to persistent viral antigen expression and microglia activation. Conclusion: Our results indicated that the integrity of LAT transcripts was not necessary for the establishment of long-term latent expression. Exogenous strong promoters (like cBh promoter) could remain active during latency when placed in Exon1 or 2.0 Kb Intron of LAT locus, although their transcriptional activity declined with time. Consistent with previous research, the foreign gene expression would last much longer when the gene cassette was located downstream of Exon1, which suggested a role of LAP2 in maintaining promoter activity during latency. Besides, over-transcription of the downstream part of LAT may induce continuous activation of the attenuated vectors, suggesting an important role of LAT in maintaining viral reactivation potential.


Development ◽  
1997 ◽  
Vol 124 (24) ◽  
pp. 4959-4970 ◽  
Author(s):  
S. Tole ◽  
C. Christian ◽  
E.A. Grove

Studies of the specification of distinct areas in the developing cerebral cortex have until now focused mainly on neocortex. We demonstrate that the hippocampus, an archicortical structure, offers an elegant, alternative system in which to explore cortical area specification. Individual hippocampal areas, called CA fields, display striking molecular differences in maturity. We use these distinct patterns of gene expression as markers of CA field identity, and show that the two major hippocampal fields, CA1 and CA3, are specified early in hippocampal development, during the period of neurogenesis. Two field-specific markers display consistent patterns of expression from the embryo to the adult. Presumptive CA1 and CA3 fields (Pca1, Pca3) can therefore be identified between embryonic days 14.5 and 15.5 in the mouse, a week before the fields are morphologically distinct. No other individual cortical areas have been detected by gene expression as early in development. Indeed, other features that distinguish between the CA fields appear after birth, indicating that mature CA field identity is acquired over at least 3 weeks. To determine if Pca1 and Pca3 are already specified to acquire mature CA field identities, the embryonic fields were isolated from further potential specification cues by maintaining them in slice culture. CA field development proceeds in slices of the entire embryonic hippocampus. More strikingly, slices restricted to Pca1 or Pca3 alone also develop appropriate mature features of CA1 or CA3. Pca1 and Pca3 are therefore able to develop complex characteristics of mature CA field identity autonomously, that is, without contact or innervation from other fields or other parts of the brain. Because Pca1 and Pca3 can be identified before major afferents grow into the hippocampus, innervation may also be unnecessary for the initial division of the hippocampus into separate fields. Providing a clue to the source of the true specifying signals, the earliest field markers appear first at the poles of the hippocampus, then progress inwards. General hippocampal development does not follow this pronounced pattern. We suggest that the sources of signals that specify hippocampal field identity lie close to the hippocampal poles, and that the signals operate first on cells at the poles, then move inwards.


2021 ◽  
Vol 147 ◽  
pp. 105152
Author(s):  
Tih-Shih Lee ◽  
Alexander Y. Li ◽  
Amedeo Rapuano ◽  
John Mantis ◽  
Tore Eid ◽  
...  

2010 ◽  
Vol 31 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Tin-Tin Win-Shwe ◽  
Shinji Tsukahara ◽  
Shoji Yamamoto ◽  
Atsushi Fukushima ◽  
Naoki Kunugita ◽  
...  

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Shoug M. Alashmali ◽  
Lin Lin ◽  
Marc-Olivier Trépanier ◽  
Giulia Cisbani ◽  
Richard P. Bazinet

Abstract Background Neuroinflammation is thought to contribute to psychiatric and neurological disorders such as major depression and Alzheimer’s disease (AD). N-6 polyunsaturated fatty acids (PUFA) and molecules derived from them, including linoleic acid- and arachidonic acid-derived lipid mediators, are known to have pro-inflammatory properties in the periphery; however, this has yet to be tested in the brain. Lowering the consumption of n-6 PUFA is associated with a decreased risk of depression and AD in human observational studies. The purpose of this study was to investigate the inflammation-modulating effects of lowering dietary n-6 PUFA in the mouse hippocampus. Methods C57BL/6 male mice were fed either an n-6 PUFA deprived (2% of total fatty acids) or an n-6 PUFA adequate (23% of total fatty acids) diet from weaning to 12 weeks of age. Animals then underwent intracerebroventricular surgery, in which lipopolysaccharide (LPS) was injected into the left lateral ventricle of the brain. Hippocampi were collected at baseline and following LPS administration (1, 3, 7, and 14 days). A microarray (n = 3 per group) was used to identify candidate genes and results were validated by real-time PCR in a separate cohort of animals (n = 5–8 per group). Results Mice administered with LPS had significantly increased Gene Ontology categories associated with inflammation and immune responses. These effects were independent of changes in gene expression in any diet group. Results were validated for the effect of LPS treatment on astrocyte, cytokine, and chemokine markers, as well as some results of the diets on Ifrd2 and Mfsd2a expression. Conclusions LPS administration increases pro-inflammatory and lipid-metabolizing gene expression in the mouse hippocampus. An n-6 PUFA deprived diet modulated inflammatory gene expression by both increasing and decreasing inflammatory gene expression, without impairing the resolution of neuroinflammation following LPS administration.


PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e60092 ◽  
Author(s):  
Zhe Cheng ◽  
Haiquan Zhao ◽  
Yuguan Ze ◽  
Junju Su ◽  
Bing Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document