Combining trace-element compositions, U–Pb geochronology and Hf isotopes in zircons to unravel complex calcalkaline magma chambers in the Upper Cretaceous Srednogorie zone (Bulgaria)

Lithos ◽  
2008 ◽  
Vol 104 (1-4) ◽  
pp. 405-427 ◽  
Author(s):  
I. Peytcheva ◽  
A. von Quadt ◽  
N. Georgiev ◽  
Zh. Ivanov ◽  
C.A. Heinrich ◽  
...  
2008 ◽  
Vol 247 (1-2) ◽  
pp. 100-118 ◽  
Author(s):  
Hong-Lin Yuan ◽  
Shan Gao ◽  
Meng-Ning Dai ◽  
Chun-Lei Zong ◽  
Detlef Günther ◽  
...  

2020 ◽  
Author(s):  
Semih Can Ülgen ◽  
A.M. Celâl Şengör ◽  
Mehmet Keskin ◽  
Namık Aysal

<p>In many ancient and active volcanic provinces dyke systems represent radial and concentric patterns. In İstanbul, NW Turkey, late Cretaceous dykes, which are emplaced in pre-Cretaceous basement rocks consisting of sedimentary rocks of Palaeozoic and Triassic ages, have both patterns. In the region, late Cretaceous volcanism is represented by three elements, (1) The Çavuşbaşı granitoid, (2) volcano-sedimentary units and (3) dykes.</p><p>Age of the Çavuşbaşı granitoid is given as 67.91±0.63 to 67.59±0.5 Ma. It is emplaced in shallow depth and has an indistinct contact aureole. Volcano sedimentary units were deposited in an intra-arc basin. Three types of dykes are reported in the region: lamprophyre, diabase and intermediate to felsic dykes (72.49±0.79 to 65.44±0.93 Ma). Different petrology and the crystallization depths of the crystals in the dykes and the Çavuşbaşı granitoid suggest two different magma chambers emplaced at two different depths, the Çavuşbaşı granitoid representing the shallower one.</p><p>Upper Cretaceous dykes are concentrated around the Çavuşbaşı granitoid and extend almost as far as 30 km away from the pluton. The intrusion of the plutonic body of the Çavuşbaşı granitoid caused a dome structure in the basement rocks. The formation of this dome structure may have controlled the stress field and the orientation of the dyke system. Similar patterns are observed in the British Tertiary igneous province, Galapagos volcanoes, Boa Vista (Cape Verde), Summer Coon volcano, Spanish Peak Mountain and Dike Mountain (Colorado), Vesuvio, Etna and Stromboli (Italy).</p><p>We suggest that Upper Cretaceous volcanic edifice in the İstanbul region is related to an arc volcano similar to the andesitic volcanoes in the Sumatra Island; we name it the Bosphorus Volcano.  </p>


Island Arc ◽  
2014 ◽  
Vol 23 (4) ◽  
pp. 281-298 ◽  
Author(s):  
Mayuko Fukuyama ◽  
Masatsugu Ogasawara ◽  
Daniel J. Dunkley ◽  
Kuo-Lung Wang ◽  
Der-Chuen Lee ◽  
...  

1981 ◽  
Vol 18 (8) ◽  
pp. 1290-1302 ◽  
Author(s):  
N. H. Gale ◽  
E. T. C. Spooner ◽  
P. J. Potts

Metalliferous sediments consisting dominantly of fine-grained iron and manganese oxides and hydroxyoxides have been widely recorded from the crests of sea-floor spreading ridges and as a basal facies of the sediment accumulations of the oceanic crust. Similar sedimentary rocks that, in Cyprus, for example, contain 10–44 wt.% Fe and 2–16 wt.% Mn, occur in association with ophiolitic rocks. These chemical precipitates are thought to have formed by oxidation of hydrothermal fluid released in submarine hot-spring areas in the discharge zones of ocean-floor geothermal systems that contained convectively circulating sea water.Lead isotope ratios of 18 samples associated with Upper Cretaceous ophiolitic rocks of the Troodos massif, Cyprus (6 samples), the Baër-Bassit area, Syria (6), and the Semail nappe in the Sultanate of Oman (6), indicate that the metalliferous sediments contain lead leached from the underlying basaltic oceanic crust during hot water – rock interaction. The amount of basaltic lead varies from comparatively little, in some samples from Syria, to essentially 100% in many of the samples from Oman. Linear mixing relationships characterized by correlation coefficients of 0.97 and 0.86 are defined on 208Pb/204Pb–206Pb/204Pb and 207Pb/204Pb–206Pb/204Pb diagrams. The mixing lines connect the less radiogenic mid-ocean ridge basalt field with the more radiogenic sea-water lead field of manganese nodules, which is also the average isotopic composition of continental crustal material. Negative covariations with Th, a trace element index of the detrital sedimentary component, and Pb/Fe, a monitor of diagenetic addition of Pb from pore waters, suggest that the main cause of the lead isotopic variation was initial adsorption of a variable ratio of leached basaltic lead to dissolved sea-water lead.The mean of 13 initial 87Sr/86Sr ratios (0.7079 ± 0.0013; 2 SD) is statistically indistinguishable from the estimated 87Sr/86Sr ratio for Late Cretaceous sea water at 0.7076 ± 0.0006 (25 values; Peterman et al.). Hence, strontium was largely derived by adsorption from sea water. However, three determinations are significantly more radiogenic than Late Cretaceous sea water. A statistically significant covariation with Rb (r = 0.78), one of the trace elements contained in the detrital, sedimentary component, suggests that the increase was caused by a variable admixture of terrigenous material.Neither lead nor strontium isotope ratios nor trace element concentrations suggest significant diagenetic modification of the isotopic compositions of the metalliferous sediments.


Clay Minerals ◽  
2014 ◽  
Vol 49 (2) ◽  
pp. 327-340 ◽  
Author(s):  
D. S. Wray ◽  
C. V. Jeans

AbstractGeochemical analysis of acid-insoluble residues derived from white chalks and marl seams of Campanian age from Sussex, UK, has been undertaken. All display a broadly similar <2 μm mineralogical composition consisting of smectite or smectite-rich illite-smectite with subordinate illite and minor amounts of talc. Plots of K2O/Al2O3 and TiO2/Al2O3 indicate that most marl seams have an acid-insoluble residue composition which is slightly different to that of the over- and underlying white chalk, implying that marl seams are primary sedimentary features not formed through white chalk dissolution. On the basis of a negative Eu anomaly and trace element geochemistry one marl seam, the Old Nore Marl, is considered to be volcanically derived and best classified as a bentonite; it is considered to correlate with the bentonite M1 of the north German succession.


Lithos ◽  
2016 ◽  
Vol 260 ◽  
pp. 286-299 ◽  
Author(s):  
Hafiz Ur Rehman ◽  
Hao-Yang Lee ◽  
Sun-Lin Chung ◽  
Tahseenullah Khan ◽  
Patrick J. O'Brien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document