Late Cretaceous K-rich magmatism in central Tibet: Evidence for early elevation of the Tibetan plateau?

Lithos ◽  
2013 ◽  
Vol 160-161 ◽  
pp. 1-13 ◽  
Author(s):  
Yalin Li ◽  
Juan He ◽  
Chengshan Wang ◽  
M. Santosh ◽  
Jingen Dai ◽  
...  
Author(s):  
Yin Liu ◽  
Wenjiao Xiao ◽  
Brian F. Windley ◽  
Kefa Zhou ◽  
Rongshe Li ◽  
...  

Carboniferous-Triassic magmatism in northern Qiangtang, central Tibet, China, played a key role in the evolution of the Tibetan Plateau yet remains a subject of intense debate. New geochronological and geochemical data from adakitic, Nb-enriched, and normal arc magmatic rocks, integrated with results from previous studies, enable us to determine the Carboniferous-Triassic (312−205 Ma), arc-related, plutonic-volcanic rocks in northern Qiangtang. Spatial-temporal relationships reveal three periods of younging including southward (312−252 Ma), rapid northward (249−237 Ma), and normal northward (234−205 Ma) migrations that correspond to distinct slab geodynamic processes including continentward slab shallowing, rapid trenchward slab rollback, and normal trenchward rollback of the Jinsha Paleotethys rather than the Longmuco-Shuanghu Paleotethys, respectively. Moreover, varying degrees of coexistence of adakites/High-Mg andesites (HMAs)/Nb-enriched basalt-andesites (NEBs) and intraplate basalts in the above-mentioned stages is consistent with the magmatic effects of slab window triggered by ridge subduction, which probably started since the Late Carboniferous and continued into the Late Triassic. The Carboniferous-Triassic multiple magmatic migrations and ridge-subduction scenarios provide new insight into the geodynamic processes of the Jinsha Paleotethys and the growth mechanism of the Tibetan Plateau.


2017 ◽  
Vol 91 (4) ◽  
pp. 1501-1502
Author(s):  
Xiaonan WANG ◽  
Yalin LI ◽  
Lintao DU ◽  
Haiyang HE ◽  
Yubai LI

2020 ◽  
Author(s):  
Weiwei Xue ◽  
Yani Najman ◽  
Xiumian Hu ◽  
Cristina Persano ◽  
Finlay M. Stuart ◽  
...  

<p>Knowledge of the geological history of the Tibetan plateau is critical to understanding crustal deformation process, and the plateau’s influence on climate. However, the timing of Tibetan plateau development remains controversial. The Nima Basin along the Jurassic-Cretaceous Bangong Suture in central Tibet provides well-dated records of exhumation in this area. Here, we present detrital zircon U-Pb, apatite U-Th/He (AHe) and apatite fission track data (AFT) from upper Cretaceous and Oligocene red sandstones and conglomerates in the Nima Basin, as well as from the Xiabie granite in the hanging wall of the basin-bounding Muggar Thrust. 4 granite conglomerate clasts from the above yield zircon U-Pb ages ranging between 114-122 Ma, which likely come from the Xiabie granite. 7 granitoid/sandstone conglomerate clasts yield AHe ages ranging from 21-58 Ma, while AFT ages range from 34-83 Ma. Thermal history inversion modelling for five of the above samples show a consistent rapid cooling from 100 ℃ to 30 ℃ between 50-40 Ma, the cooling rate decreased significantly after 40 Ma. Implications of these data, integrated in the context of previously published data for the wider region (e.g. Rohrmann et al. 2012; Haider et al., 2013; Li et al., 2019) will be discussed.</p><p> </p><p><strong>Reference</strong></p><p>Rohrmann, A et al., 2012, Thermochronologic evidence for plateau formation in central Tibet by 45 Ma: Geology, v. 40, p. 187-190.</p><p>Haider, V. L et al., 2013, Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the Early Paleogene development of peneplains at Nam Co, Tibetan Plateau: Journal of Asian Earth Sciences, v. 70-71, p. 79-98.</p><p>Li, H. A et al., 2019, The formation and expansion of the eastern Proto-Tibetan Plateau: Insights from low-temperature thermochronology: Journal of Asian Earth Sciences, v. 183, 103975.</p>


2015 ◽  
Vol 114 ◽  
pp. 693-703 ◽  
Author(s):  
Zhenhan Wu ◽  
Patrick J. Barosh ◽  
Peisheng Ye ◽  
Daogong Hu

2019 ◽  
Vol 89 (10) ◽  
pp. 1039-1054 ◽  
Author(s):  
Zhicai Zhu ◽  
Qingguo Zhai ◽  
Peiyuan Hu ◽  
Sunlin Chung ◽  
Yue Tang ◽  
...  

ABSTRACT The closure of the Bangong–Nujiang Tethyan Ocean (BNTO) and consequent Lhasa–Qiangtang collision is vital to reasonably understanding the early tectonic history of the Tibetan Plateau before the India-Eurasia collision. The timing of the Lhasa–Qiangtang collision was mainly constrained by the ophiolite and magmatic rocks in previous studies, with only limited constraints from the sedimentary rocks within and adjacent to the Bangong–Nujiang suture zone. In the middle segment of the Bangong–Nujiang suture zone, the Duoni Formation, consisting of a fluvial delta sequence with minor andesite interlayers, was originally defined as the Late Cretaceous Jingzhushan Formation and interpreted as the products of the Lhasa–Qiangtang collision during the Late Cretaceous. Our new zircon U-Pb data from two samples of andesite interlayers demonstrate that it was deposited during the latest Early Cretaceous (ca. 113 Ma) rather than Late Cretaceous. Systemic studies on the sandstone detrital model, heavy-mineral assemblage, and clasts of conglomerate demonstrate a mixed source of both Lhasa and Qiangtang terranes and ophiolite complex. Clasts of conglomerate contain abundant angular peridotite, gabbro, basalt, chert, andesite, and granite, and minor quartzite and gneiss clasts also exist. Sandstones of the Duoni Formation are dominated by feldspathic–lithic graywacke (Qt25F14L61 and Qm13F14L73), indicative of a mixture of continental-arc and recycled-orogen source origin. Detrital minerals of chromite, clinopyroxene, epidote, and hornblende in sandstone also indicate an origin of ultramafic and mafic rocks, while garnets indicate a metamorphosed source. Paleocurrent data demonstrate bidirectional (southward and northward) source origins. Thus, we suggest that the deposition of the Duoni Formation took place in the processes of the Lhasa–Qiangtang collision during the latest Early Cretaceous (∼ 113 Ma), and the BNTO had been closed by this time.


2020 ◽  
Vol 6 (50) ◽  
pp. eaba7298
Author(s):  
Xiaomin Fang ◽  
Guillaume Dupont-Nivet ◽  
Chengshan Wang ◽  
Chunhui Song ◽  
Qingquan Meng ◽  
...  

Knowledge of the topographic evolution of the Tibetan Plateau is essential for understanding its construction and its influences on climate, environment, and biodiversity. Previous elevations estimated from stable isotope records from the Lunpola Basin in central Tibet, which indicate a high plateau since at least 35 Ma, are challenged by recent discoveries of low-elevation tropical fossils apparently deposited at 25.5 Ma. Here, we use magnetostratigraphic and radiochronologic dating to revise the chronology of elevation estimates from the Lunpola Basin. The updated ages reconcile previous results and indicate that the elevations of central Tibet were generally low (<2.3 km) at 39.5 Ma and high (3.5 to 4.5 km) at ~26 Ma. This supports the existence in the Eocene of low-elevation longitudinally oriented narrow regions until their uplift in the early Miocene, with potential implications for the growth mechanisms of the Tibetan Plateau, Asian atmospheric circulation, surface processes, and biotic evolution.


1999 ◽  
Vol 89 (1) ◽  
pp. 325-330
Author(s):  
C. C. Reese ◽  
R. R. Rapine ◽  
J. F. Ni

Abstract The propagation efficiencies of the regional phases Lg and Pn are indicative of how active and recent tectonics influence crust and uppermost mantle properties, respectively. In this study, regional scale lateral heterogeneity of Lg and Pn attenuation for the region in and around the southern Tibetan Plateau is investigated. The data set is comprised of seismograms recorded at the Chinese Digital Seismogram Network (CDSN) station LSA from regional events with epicentral distances within 11°. Attenuation of Lg and Pn is calculated using spectral methods and assuming constant QLg and QPn models for the frequency bands 0.3 to 3.0 Hz and 0.5 to 4.0 Hz, respectively. Lateral variation in attenuation is estimated by analyzing data on an event-by-event basis. Significant lateral variation is observed with QLg decreasing from about 520 for events south of LSA to about 340 for events north of LSA and QPn ∼ 670 for southern backazimuths, while QPn ∼ 240 for northern events. For Pn, this north-south variation is consistent with other observations, indicating partially melted upper mantle beneath north central Tibet. For Lg, the azimuthal variation in attenuation indicates that Lg propagation as observed at LSA is efficient for paths crossing the southern boundary of the Tibetan Plateau relative to paths within the plateau itself.


2016 ◽  
Vol 43 (1) ◽  
pp. 162-173 ◽  
Author(s):  
Duo Wang ◽  
Gong-Ming Yin ◽  
Xu-Long Wang ◽  
Chun-Ru Liu ◽  
Fei Han ◽  
...  

Abstract The Gyaring Co Fault (GCF) is an active right-lateral strike-slip fault in central Tibet that accommodates convergence between India and Asia in the interior of the Tibetan Plateau. The average long-term slip rate of the fault remains controversial, given the absence of absolute age data of faulted geomorphic features. We have applied optically stimulated luminescence (OSL) dating to the northern segment of the GCF, revealing that the GCF has displaced alluvial fans at Aerqingsang by 500 ± 100 m since their deposition at ~109 ka, yielding a slip rate of 4.6 ± 1.0 mm/yr. A slip rate of 3.4 ± 0.4 mm/yr is inferred from analysis of an alluvial fan with an offset of 65 ± 5 m (~19 ka) at Quba site 1. The Holocene slip rate is estimated to be 1.9 ± 0.3 mm/yr, as inferred from the basal age (~8.3 ka) of terrace T1 that has a gully displacement of 16 ± 2 m at Quba site 2. These slip rates are generally lower early estimates (10–20 mm/yr), but are consistent with more recent results (2.2–4.5 mm/yr) and GPS data for other strike-slip faults in this region, indicating that deformation may be distributed across the entire Tibetan Plateau. Moreover, we suggest that the slip rate along the GCF may have decreased slightly during the late Quaternary.


Sign in / Sign up

Export Citation Format

Share Document