scholarly journals Revised chronology of central Tibet uplift (Lunpola Basin)

2020 ◽  
Vol 6 (50) ◽  
pp. eaba7298
Author(s):  
Xiaomin Fang ◽  
Guillaume Dupont-Nivet ◽  
Chengshan Wang ◽  
Chunhui Song ◽  
Qingquan Meng ◽  
...  

Knowledge of the topographic evolution of the Tibetan Plateau is essential for understanding its construction and its influences on climate, environment, and biodiversity. Previous elevations estimated from stable isotope records from the Lunpola Basin in central Tibet, which indicate a high plateau since at least 35 Ma, are challenged by recent discoveries of low-elevation tropical fossils apparently deposited at 25.5 Ma. Here, we use magnetostratigraphic and radiochronologic dating to revise the chronology of elevation estimates from the Lunpola Basin. The updated ages reconcile previous results and indicate that the elevations of central Tibet were generally low (<2.3 km) at 39.5 Ma and high (3.5 to 4.5 km) at ~26 Ma. This supports the existence in the Eocene of low-elevation longitudinally oriented narrow regions until their uplift in the early Miocene, with potential implications for the growth mechanisms of the Tibetan Plateau, Asian atmospheric circulation, surface processes, and biotic evolution.

2021 ◽  
Author(s):  
Xiaomin Fang ◽  
Guillaume Dupont-Nivet ◽  
Chengshan Wang ◽  
Chunhui Song ◽  
Qingquan Meng ◽  
...  

&lt;p&gt;Understanding the Tibetan Plateau (TP) topographic history is essential to determining its building mechanisms and its role in driving regional climate, environments and biodiversity. The Lunpola Basin (central-southern Tibet) is the key place to constrain the Tibet building because it deposits the most complete Cenozoic stratigraphy sequence in the central TP and bears many layers of tuffs, abundant fossil plants and mammals and paleosols. It is also the first place that stable isotope based paleoaltimetry was applied to, which suggested that similar to present elevation was attained in the central TP at least 35 Ma ago, implying a much earlier uplift of the TP than before. This view was soon widely accepted by international society but was challenged by recent discoveries of low elevations tropical fossil apparently deposited at 25.5 Ma. However, we use magnetostratigraphic and radiochronologic dating to robustly revise the chronology of regional elevation estimates both from the stable isotope and fossils in the Lunpola Basin. The results indicate that both ages estimated for the stable and fossil based elevations are wrong with the former from ~40 Ma revising to ~26-21 Ma and the later from ~26 Ma to ~40 Ma. Thus this revised chronology demonstrates that central Tibet was generally low (&lt;2.3 km) since at least ~40 Ma and became high (3.5-4.5 km) since at least ~26 Ma. This supports the Eocene existence of a lowland between the Gangdese Shan and Tanggula Shan until their early Miocene uplift. This later uplift of central-southern Tibet has important implications for Tibetan Plateau (TP) growth mechanisms and agrees well with recently updated studies of the TP-imposed impacts on Asian atmospheric circulations, surface processes and biotic evolution and diversification differentiation.&lt;/p&gt;


Author(s):  
Yin Liu ◽  
Wenjiao Xiao ◽  
Brian F. Windley ◽  
Kefa Zhou ◽  
Rongshe Li ◽  
...  

Carboniferous-Triassic magmatism in northern Qiangtang, central Tibet, China, played a key role in the evolution of the Tibetan Plateau yet remains a subject of intense debate. New geochronological and geochemical data from adakitic, Nb-enriched, and normal arc magmatic rocks, integrated with results from previous studies, enable us to determine the Carboniferous-Triassic (312−205 Ma), arc-related, plutonic-volcanic rocks in northern Qiangtang. Spatial-temporal relationships reveal three periods of younging including southward (312−252 Ma), rapid northward (249−237 Ma), and normal northward (234−205 Ma) migrations that correspond to distinct slab geodynamic processes including continentward slab shallowing, rapid trenchward slab rollback, and normal trenchward rollback of the Jinsha Paleotethys rather than the Longmuco-Shuanghu Paleotethys, respectively. Moreover, varying degrees of coexistence of adakites/High-Mg andesites (HMAs)/Nb-enriched basalt-andesites (NEBs) and intraplate basalts in the above-mentioned stages is consistent with the magmatic effects of slab window triggered by ridge subduction, which probably started since the Late Carboniferous and continued into the Late Triassic. The Carboniferous-Triassic multiple magmatic migrations and ridge-subduction scenarios provide new insight into the geodynamic processes of the Jinsha Paleotethys and the growth mechanism of the Tibetan Plateau.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dongxu Cai ◽  
Xianyan Wang ◽  
Guangwei Li ◽  
Wenbin Zhu ◽  
Huayu Lu

The interaction of surface erosion (e.g., fluvial incision) and tectonic uplift shapes the landform in the Tibetan Plateau. The Lhasa River flows toward the southwest across the central Gangdese Mountains in the southern Tibetan Plateau, characterized by a low-relief and high-elevation landscape. However, the evolution of low-relief topography and the establishment of the Lhasa River remain highly under debate. Here, we collected thermochronological ages reported in the Lhasa River drainage, using a 3D thermokinematic model to invert both late Cenozoic denudation and relief history of the Lhasa River drainage. Our results show that the Lhasa River drainage underwent four-phase denudation history, including two-stage rapid denudation at ∼25–16 Ma (with a rate of ∼0.42 km/Ma) and ∼16–12 Ma (with a rate of ∼0.72 km/Ma). In the latest Oligocene–early Miocene, uplift of the Gangdese Mountains triggered the rapid denudation and the formation of the current main drainage of the Lhasa River. In the middle Miocene, the second stage of the rapid denudation and the high relief were associated with intense incision of the Lhasa River, which is probably due to the enhanced Asian summer monsoon precipitation. This later rapid episode was consistent with the records of regional main drainage systems. After ∼12 Ma, the denudation rate decreases rapidly, and the relief of topography in the central Gangdese region was gradually subdued. This indicates that the fluvial erosion resulting from Asian monsoon precipitation increase significantly impacts on the topographic evolution in the central Gangdese region.


2020 ◽  
Vol 7 (3) ◽  
pp. 500-515 ◽  
Author(s):  
Yunfei Fu ◽  
Yaoming Ma ◽  
Lei Zhong ◽  
Yuanjian Yang ◽  
Xueliang Guo ◽  
...  

Abstract Correct understanding of the land-surface processes and cloud-precipitation processes in the Tibetan Plateau (TP) is an important prerequisite for the study and forecast of the downstream activities of weather systems and one of the key points for understanding the global atmospheric movement. In order to show the achievements that have been made, this paper reviews the progress on the observations for the atmospheric boundary layer, land-surface heat fluxes, cloud-precipitation distributions and vertical structures by using ground- and space-based multiplatform, multisensor instruments and the effect of the cloud system in the TP on the downstream weather. The results show that the form drag related to the topography, land–atmosphere momentum and scalar fluxes is an important part of the parameterization process. The sensible heat flux decreased especially in the central and northern TP caused by the decrease in wind speeds and the differences in the ground-air temperatures. Observations show that the cloud and precipitation over the TP have a strong diurnal variation. Studies also show the compressed-air column in the troposphere by the higher-altitude terrain of the TP makes particles inside clouds vary at a shorter distance in the vertical direction than those in the non-plateau area so that precipitation intensity over the TP is usually small with short duration, and the vertical structure of the convective precipitation over the TP is obviously different from that in other regions. In addition, the influence of the TP on severe weather downstream is preliminarily understood from the mechanism. It is necessary to use model simulations and observation techniques to reveal the difference between cloud precipitation in the TP and non-plateau areas in order to understand the cloud microphysical parameters over the TP and the processes of the land boundary layer affecting cloud, precipitation and weather in the downstream regions.


Author(s):  
Robert A. Spicer ◽  
Tao Su ◽  
Paul J. Valdes ◽  
Alexander Farnsworth ◽  
Fei-Xiang Wu ◽  
...  

AbstractThe Tibetan Plateau was built through a succession of Gondwanan terranes colliding with Asia during the Mesozoic. These accretions produced a complex Paleogene topography of several predominantly east–west trending mountain ranges separated by deep valleys. Despite this piecemeal assembly and resultant complex relief, Tibet has traditionally been thought of as a coherent entity rising as one unit. This has led to the widely used phrase ‘the uplift of the Tibetan Plateau’, which is a false concept borne of simplistic modelling and confounds understanding the complex interactions between topography climate and biodiversity. Here, using the rich palaeontological record of the Tibetan region, we review what is known about the past topography of the Tibetan region using a combination of quantitative isotope and fossil palaeoaltimetric proxies, and present a new synthesis of the orography of Tibet throughout the Paleogene. We show why ‘the uplift of the Tibetan Plateau’ never occurred, and quantify a new pattern of topographic and landscape evolution that contributed to the development of today’s extraordinary Asian biodiversity.


2016 ◽  
Vol 48 (5-6) ◽  
pp. 1705-1721 ◽  
Author(s):  
Yanhong Gao ◽  
Linhong Xiao ◽  
Deliang Chen ◽  
Fei Chen ◽  
Jianwei Xu ◽  
...  

2020 ◽  
Author(s):  
Weiwei Xue ◽  
Yani Najman ◽  
Xiumian Hu ◽  
Cristina Persano ◽  
Finlay M. Stuart ◽  
...  

&lt;p&gt;Knowledge of the geological history of the Tibetan plateau is critical to understanding crustal deformation process, and the plateau&amp;#8217;s influence on climate. However, the timing of Tibetan plateau development remains controversial. The Nima Basin along the Jurassic-Cretaceous Bangong Suture in central Tibet provides well-dated records of exhumation in this area. Here, we present detrital zircon U-Pb, apatite U-Th/He (AHe) and apatite fission track data (AFT) from upper Cretaceous and Oligocene red sandstones and conglomerates in the Nima Basin, as well as from the Xiabie granite in the hanging wall of the basin-bounding Muggar Thrust. 4 granite conglomerate clasts from the above yield zircon U-Pb ages ranging between 114-122 Ma, which likely come from the Xiabie granite. 7 granitoid/sandstone conglomerate clasts yield AHe ages ranging from 21-58 Ma, while AFT ages range from 34-83 Ma. Thermal history inversion modelling for five of the above samples show a consistent rapid cooling from 100 &amp;#8451; to 30 &amp;#8451; between 50-40 Ma, the cooling rate decreased significantly after 40 Ma. Implications of these data, integrated in the context of previously published data for the wider region (e.g. Rohrmann et al. 2012; Haider et al., 2013; Li et al., 2019) will be discussed.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Reference&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Rohrmann, A et al., 2012, Thermochronologic evidence for plateau formation in central Tibet by 45 Ma: Geology, v. 40, p. 187-190.&lt;/p&gt;&lt;p&gt;Haider, V. L et al., 2013, Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the Early Paleogene development of peneplains at Nam Co, Tibetan Plateau: Journal of Asian Earth Sciences, v. 70-71, p. 79-98.&lt;/p&gt;&lt;p&gt;Li, H. A et al., 2019, The formation and expansion of the eastern Proto-Tibetan Plateau: Insights from low-temperature thermochronology: Journal of Asian Earth Sciences, v. 183, 103975.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document